Atlanta University Center

Digital Commons@Robert W. Woodruff Library, Atlanta
University Center

ETD Collection for AUC Robert W. Woodruft Library

12-1-1983

The system simulation for communication network

Taksin Plabjang
Atlanta University

Follow this and additional works at: http://digitalcommons.auctr.edu/dissertations

b Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation

Plabjang, Taksin, "The system simulation for communication network" (1983). ETD Collection for AUC Robert W. Woodruff Library.
Paper 2584.

This Thesis is brought to you for free and open access by Digital Commons@Robert W. Woodruff Library, Atlanta University Center. It has been
accepted for inclusion in ETD Collection for AUC Robert W. Woodruff Library by an authorized administrator of Digital Commons@Robert W.

Woodruff Library, Atlanta University Center. For more information, please contact cwiseman@auctr.edu.

http://digitalcommons.auctr.edu?utm_source=digitalcommons.auctr.edu%2Fdissertations%2F2584&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.auctr.edu?utm_source=digitalcommons.auctr.edu%2Fdissertations%2F2584&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.auctr.edu/dissertations?utm_source=digitalcommons.auctr.edu%2Fdissertations%2F2584&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.auctr.edu/dissertations?utm_source=digitalcommons.auctr.edu%2Fdissertations%2F2584&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.auctr.edu%2Fdissertations%2F2584&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.auctr.edu%2Fdissertations%2F2584&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.auctr.edu/dissertations/2584?utm_source=digitalcommons.auctr.edu%2Fdissertations%2F2584&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cwiseman@auctr.edu

l

THE SYSTEM SIMULATION
FOR

COMMUNICATION NETWORK

A THESIS
SUBMITTED TO THE FACULTY OF ATLANTA UNIVERSITY
FOR FULFILIMENT OF THE REQUIREMENT FOR
THE DEGREE OF MASTER OF SCIENCE

BY

TAKSIN PLABJANG
DEPARTMENT OF MATHEMATICAL SCIENCES
ATLANTA, GEORGIA
DECEMBER, 1983

TABLE OF CONTENTS

LIST OF FIGURES .uvesecsoncccscocssosnssasosssscssasoscns
LIST OF TABLES tvtceeesscescecssncesssvensssassssscsnsccs
ACKNOWLEDGMENTS .vcescecencoscossossscoscncocsacssssssocasnse
ABSTRACT cveeeecesncsososososssnssosssossssssssssososoccs
Chapter

1. INTRODUCTION .ivceececcscsocessosssasssccsssconcnans
GENERAL SYSTEM SIMULATION ..ccccecceascsssccnccncs

RANDOM NUMBER © 8 ® 9 5 6 066 0 0 0 8 0 P E S S 0P LB OV LSS SO O . e

MANAGING QUEUE ® 8 0 6 86 2 6 8 06 8 6 S 0 5 0 ¢ 508 0 00 0SSO NSRS e

COMMUNICATION NETWORK SYSTEM ...oceecesen ceesssnas

STATIC DESCRIPTION OF THE SIMULATION NETWORK

DYNAMIC DESCRIPTION OF THE SIMULATION NETWORK

DOCUMENTATION FOR SIMULATION NETWORK PROGRAM

.

INPUT AND OUTPUT FORMATccoc0. ceeees e cenenn

o (Ve oo -~ (o)) (S]] = w N
L]

10. ANALYSIS RESULTS OF SIMULATION NETWORK PROGRAM ...
APPENDIX A FLOW CHART OF FUNCTIONS MANAGING QUEUE
APPENDIX B TESTING RANDOM NUMBER .cceecececcncenananses
APPENDIX C GLOSSARY (eecvenssccocccccnses chsrcseeens “o
APPENDIX D SYMBOL REPRESENTATIONcveccecencns ceene

BIBLIOGRAPHIES e 5 0 0 06 00 0 0008 0850 ® e o 08 0 0 ® 8 0686 060 0 8 00 08 00 e« s 0 0 s o

ii
iii

iv

10
12
15
19
30
38
85
g4
102
106
113
17

LIST OF FIGURES

Figure
| 1. Sample of Communication Networkeceeeececcces 16
2. Sample of Simulation Network Modelccceceeee 18
3. A Network Consisting of 2 Nodes and a Link 19
. A Network Consisting of 4 Nodes and 4 Links 20
. Symbol and the Parameter for Originator Node 23

. Symbol and the Parameter for Delay Node 26

y

5

6

7. Symbol for Destroyer Node et eeeeene e 27
8. Simulation Network Modelcevceeessccccesacene 29
9. Model for Simulation Network Activity 30
0. Events and States in the Systemecccevenane 31
List of Events in Event Queueceveecevvcccses 32
. Model of Simulation Program USage ...c.eeessseeess. 34
The Event Scheduling Process ..c.cccesoscercsacssss 37
Procedure Dependence for Simulation Network 37
The Structure of the Event Queue ...ccoeeceveecses 41
The Structure of the Delay QUEUE .cesceeoonoracns 43
Flow Chart for the Simulation Network Program ... 59
Format of Input Data File ...eseecceecccnosnsasns 87
Flow Chart of Procedure Inserteventqueue 102
Flow Chart of Procedure Getnextevent 103

Flow Chart of Procedure Insertceeeecessseess 104

Flow Chart of Procedure Deletecsoceeesssesase 105

LIST OF TABLES

Table

Model ® € 5 8 6 0 9 50 0 O PSSP SO DN SPGB SDS

1. List of 100 Random Number in Length 0..1

. Statistical Table for Simulation Network ..

2. Parameter for Originator and Delay Node in Network

. Coding Main Program List of Simulation Network ...

. Example of Debug Output for Action Listing

. Example of Summary Report of Simulation Network

. Results of a Simulation Network Model

10. Data Describing another Simulation Network System.

16. Results of Simulation Network,
Maxtime=1oo & ¢ 86 5 8 6 0 & 8 0 5 3 0 " b

17. Results of Simulation Network,

ii

Maxtime= 100 5 o 8 0 00 00 e 00800 00000

12. Sequence of 100 Random Numbers, Seed

13. Sequence of 100 Random Numbers, Seed

Seed

Seed

3

I
| 5
6. Example of List of Events in Event Queue ..
| 7

8

9

. Data Describing a Simulation Network System

11. Results of another Simulation Network Model

14, List of Event Times, Seed=0, Low=2.5, High=4.5

15. List of Event Times, Seed=4, Low=2.5, High=4.5 ...

11

28
57
89
90
92
93
9y
96

99
107
107
108

109

110

ACKNOWLEDGEMENTS

I wish to express my deepest appreciation, especially
for my advisor, Dr. Bennett Setzer. This thesis could not
be accomplished without his support and patience.
Furthermore, I would 1like to extend my respect to the

following Mathematical Department instructors

Dr. Benjamin J. Martin
Dr. Johnny L. Houston
Dr. Nazir A. Warsi |
Dr. Grover Simmons

Dr. Ronald Biggers

Dr. Arthur M. Jones

Dr. Henry Gore

Those instructors have been extremely helpful to me for

all the time that I have been Atlanta University student.

iii

ABSTRACT

COMPUTER SCIENCE

Taksin Plabjang B.A. Chulalongkorn University,
Bangkok, Thailand, 1979.

THE SYSTEM SIMULATION FOR COMMUNICATION NETWORK.

Advisor : Dr. Bennett Setzer

Thesis date December, 1983

The advent of computers has made it feasible to
approach the study of such complex systems by means of
simulation. Computer simulation is a design tool to minimize
cost, planning, and implementation, Computer simulation also
is a well-known and popular technique for studying the
behavior of complex systems. The communication network
system is one of the complex systems that should be studied

by the simulation model.

In order to gain a fuller understanding of the
simulation of communication a network system, the author made

this attempt to develop and document his simulation network

progranm,

CHAPTER 1

INTRODUCTION

CHAPTER 1

INTRODUCTION

We have developed a simulation program which can model
certain kinds of communication networks, namely packet
switched trunk level networks. The program can also be used
to model other systems, such as student registration at a
college. In our program, the model is represented Dby a
network containing three types of nodes. Entities called.
packets move through the network simulating the activity of
the real system. An originator node creates a packet and
sends it to other nodes. A destroyer node receives a packet'
and removes it from the system. The third kind of node,

called a delay node, is a single server queue.

A communication network consists of several nodes
connected by transmission lines. We model this by
representing each communication node by an originator node
and a destroyer node. The originator node represents the
communication node transmitting a packet generated 1locally.
The destroyer node represents the communication node
receiving a packet and removing it from the network. Delay

nodes are used to represent delays in transit from one

communication node to another. They can also represent
delays within a node through which a packet 1is simply
passing. One goal of a communication network is to minimize
the transit time of a packet from transmission until
reception. We use the simulation model to provide the good
results. By varying parameters and geometry, characteristics
of methods to improve the performance of the communication

network can be found.

The simulation program is written in PASCAL and runs on

the VAX 11/780. Several features of this program are

(a) Input file describes network. This program allows
the user to use an input data file to contain data to specify
the network. This includes the parameter values of
originator nodes and delay nodes.

(b) Diagnostic options. This program has two options
for the user to see each event after performing an action
and/or all of the events pending in the event queue.

(¢) Delays and routing can be randomly generated 1in
this communication network system.

(d) Length of simulation time is specified by the user.
This program allows the user to define the maximum simulated

time for the run.

The efficiency of this program depends on the number of

events that are simulated and the CPU time. For example, in

-2 -

one run of 50 units simulation time, there were 89 events

simulated in that length of time with a CPU time of 0.56

seconds. This means the program simulated 150 events per CPU

second.

CHAPTER 2

GENERAL SYSTEM SIMULATION

CHAPTER 2
GENERAL SYSTEM SIMULATION

There are many complex systems which are difficult to
study such as (1) communication networks, (2) manufacturing
systems, (3) registration process at a college. To minimize
the high cost of such systems, plénning and implementation
must be as efficient as possible. One technique of planning
which yields results quickly and at relatively low cost is
known as simulation. Simulation makes it possible to test a
system before deciding to invest 1in a corresponding real

system.

Computer simulation is the process of conducting
experiments on a computer model of a dynamic system. The
immediate purpose of these experiments 1is to observe the
behavior of a system wunder a given set of assumptions,
conditions and parameter values. In this chapter, we show
how to use system simulation to study the behavior of a
communication network system. We wuse discrete simulation
modeling to model our network system. "In discrete

simulation, the state of the system can change only at event

times. Since the state of the system remains constant

between event times, a complete dynamic of the state of the
system can be obtained by advancing simulated time from one

event to the next."1

We use a queue of scheduled events prioritized by time
to drive the simulation cloeck. Next, we will be comparing a
definition for various parts of a simulation experiment by

William G. Bulgren, related to our project.

" A system is defined as an aggregation or assemblage
of objects Jjoined in some regular interaction or
interdependence."2

For example, a communication network consists of
several nodes connected by transmission lines. As another
example, our simulation network consists of nodes of several
types connected by paths. There are originator nodes to
create packets which move along the paths through the systen,
delay nodes representing process delays, and destroyer nodes

for removing packets from the system.

" An entity is an object of interest in a system."

In our communication network system we have the

A. Alan, B. Pritsker, and Claude Dennis, Introduction
to Simulation and SLAM (New York : A Halsted Press Book,
John Wiley and Sons, 1979), p.bl

2
William G. Bulgren, Discrete System Simulation (
Englewood Cliffs, New Jersey : Prentice-Hall Inc., 1982),

p. 2
3 .
Ibid.

following entities: nodes, message packets, and transmission
lines; In our simulation network system: originator nodes,
delay nodes, destroyer nodes, packets, and paths are

entities.

" An attribute is a property of an entity."

In our communication network system we have the
following attributes for each entity

Nodes : Sending and receiving a packet.

Message packets : Route through system, and time in
system,

Transmission lines : Target node of path.

We also have attributes for each entity in our
simulation network as follow

Originator node : Distribution of packets originating
at this node.

Delay node : Distribution of service times through the
node and distribution of exit paths for packets leaving the
node.

Destroyer node : No attribute.

Packets : Delay time in system, transit time, and
service time.

William G. Bulgren, Discrete System Simulation (
Englewood Cliffs, New Jersey : Prentice-Hall Inc., 1982),
p. 3

Paths : Target node of path,

" An activity is a process that cause changes in the

system."

The activities in our communication network are sending
packets and receiving packets. We also have many activities
in our simulation network such as creating a new packet, a
packet leaving a delay node, destroying a packet, packet
entering a delay queue, and serving a packet waiting in a
service queue. An event is a combination of activities that
occur in response to some single activity. We have three
major events in our simulation network. These are

1. Create event. Create a new packet at an originator
node, This event includes some of these
activities. They are packet entering a delay
server and packet entering a delay queue.

2. Leave event. Packet leaves a delay node moving to
another delay node or a destroyer node. This event
includes some of these activities. They are
serving a packet waiting in service queue, packet
entering a delay server or packet entering a delay

queue, and destroying a packet.

3. Stop event. Stop the simulation.

William G. Bulgren, Discrete System Simulation (

Englewood Cliffs, New Jersey : Prentice-Hall Inc., 1982),
p. 3

-7 -

" A model is a representation of a system to describe

the system in sufficient detail for the behavior of the model
to provide valid predictions of the behavior of the system."6

A communication network consists of several nodes
connected by transmission 1line. The concepts of our
communication network system are sending packets, receiving
packets, and delays in transmission for the packet. The
model for our communication network 1is represented by a
simulation network containing three types of nodes. These
communication nodes are represented by originator nodes,
destroyer nodes, and sometimeé delay nodes. In the case of a
particular communication network, an input data file 1is
created which contains the parameter values of originator

nodes and delay nodes to describe our communication network

system.
Communication Network Model
Input Qutput
parameters Sending Packet
—_— o S
3 Receiving Packet —_—
—_— _—

Transmission Delays

for packet

William G. Bulgren, Discrete System Simulation (

Englewood Cliffs, New Jersey : Prentice-Hall Inc., 1982),
p. 4

In our network model we use the input varameter values
tc compute the creatiqn time distribution for new packets.
Wew packets are sent from originator nodes to delay nodes or
destroyer nodes. If a packet is sent to a delay node we also
use the input parameter values to compute the delay time
distribution in that delay node and also to compute the
exitpath from that delay node. But if the packet is sent to
a destroyer node, we save the transit time and delay time of

the packet for the output of the mecdel.

CHAPTER 3

RANDOM NUMBER

CHAPTER 3
RANDOM NUMBER

In our simulation program, we must take samples from
various statistical distributions. We use a pseudo-random

number generator to do this. The generator is based on the

linear congruence method. This produces a random number
using the following formula7:
Seed = (multiplier x Seed + increment) mod modulus
Random number = Seed/65536

We use the following coefficient58 to generate random

number.
modulus = 216 = 65536
multiplier = 25173
increment = 13849

This formula provides a pseudo-random sample in the

Peter Grogono, Programming in PASCAL (Concordia
University, Montreal : Addison-Wesley, Publishing Company,
Inc., 1980), p. 119

Ibid.

interval [0,1]. OQur simulation program allows the user to
specify the initial value of the seed for generating random

numbers.

For example, Table 3.1 is a list of 100 random numbers

generated by using the initial value of seed equal 0.

0.211 0.744 0.476 0.262 0.212 0.936 0.793 0.474 0.480 0.290
0.305 0.871 0.936 0.163 0.560 0.937 0.753 0.167 0.356 0.406
0.352 0.160 0.739 0.263 0.405 0.252 0.005 0.742 0.834 0.802
0.702 0.328 0.810 0.419 0.626 0.754 0.757 0.963 0.825 0.005
0.345 0.543 0.595 0.316 0.497 0.518 0.484 0.171 0.383 0.499
0.287 0.304 0.428 0.344 0.053 0.700 0,301 0.162 0.077 0.593
0.925 0.313 0.906 0.468 0.472 0.407 0.339 0.058 0.364 0.302
0.420 0.349 0.272 0.109 0.448 0.574 0.119 0.186 0.970 0.218
0.076 0.143 0.781 0.015 0.566 0.839 0.929 0.950 0.259 0.384
0.711 0.257 0.079 0.137 0.674 0.420 0.196 0.707 0.614 0.175

Table 3.1 list of 100 random numbers in interval [0,1]

This simulation network program is written in PASCAL,

16

therefore, the largest value of the coefficient modulus is 2.
That means we can generate 65536 random numbers and the
sequence repeats. If we use another language such as Assembly
language, to write this program, the value of modulus can be
rather large to é35. So, we have more than 65536 random

numbers generated.

Donald E. Knuth, The Art of Computer Programming (
Standford University: Addison-Wesley Publishing Company,
Inc., 1969), p. 88

- 11 =

CHAPTER 4

MANAGING QUEUE

CHAPTER 4
MANAGING QUEUE

Most simulation models need functions to manage queues.
A queue is a data structure used for dynamic temporary
storage of elements. Elements may enter a queue at any time.
When an element is removed from queue, various rules can be
used to decide which element to select :

(1) FIFO (First-In-First-Out)

(2) Priority measure.

In our simulation network model, we have two kinds of
queues, They are event queues and delay queues. A delay
queue is a FIFO, an event queue is a priority queue based on
least time of event occurrence. We wuse a 1linked list
structure to implement both types of queues. There is one

event queue in this system.

Event queue

The event queue contains a list of all events in the
network system to be processed and keeps them sorted by the
time they are to occur. We use a linear search to find the

place for a new event to be inserted into the event queue.

- 12 -

The event queue is a priority queue, It keeps the
event 1ist ordered by time. On each simulation cycle, we
advance the clock to the next event in the event queue and
process that new event. Therefore, the event that has the
smalles event time is placed at the head of event queue and
the event that has the biggest event time is placed at the
tail of event queue. We have two activities involved with
the eventqueue. They are to insert in and delete from the
event queue. These two activities are handled by two
procedures named Inserteventqueue and Getnextevent

respectively.

Inserteventqueue : This procedure adds a new event to
the event queue, keeping the -event 1list ordered by time
field. After inserting a new event into the event queue, a
pointer points to the next event in the event queue. A flow

chart of this procedure can be found in Appendix A, page 102

Getnextevent : This procedure removes the next event
from the front of event queue. After deleting first event
from the event queue, a pointer points to the new first event
in the event queue. A flow chart of this procedure can be

found in Appendix A, page 103

Delay queue
Each delay node in our network system has a queue for

packets which are waiting for service. The delay queues are

- 13 -

first-in-first-out (FIFO0) . The first packet that waits in a
delay queue will be deleted first from the queue. The delay
queue also has two activities, insert packet into delay queue
and delete packet from delay queue. Again, we have two
procedures to handle these activities, called Insert and

Delete.

Insert : This procedure inserts a packet at the end of
delay queue. After inserting a new packet, a pointer points
to nil. A flow chart of this procedure can be found in

Appendix A, page 104

Delete : This procedure takes the first packet from a
delay queue. After deleting the first packet, a pointer
points to the front of the queue. A flow chart of this

procedure can be found in Appendix A, page 105

In our simulation network model, both delay queues and
the event queue have no limit on the number of packets and
number of events that can be stored. This is because we use
a linked 1list structure ¢to implement those queues. Note
that, for a given simulation network, the maximum size of the
event queue can be predicted as the number of originator
nodes plus number of delay nodes plus 1 (stop event). It is
convenient, however, for the system to be able to handle a

large size network without recompiling.

CHAPTER 5

COMMUNICATION NETWORK SYSTEM

CHAPTER 5
COMMUNICATION NETWORK SYSTEM

A communication network is the system that transfer and
processing of Qiscrete units of information within the
network. The communication network consists of several nodes
connected by transmission lines. Two kinds of communication

nodes are

1. Sender node. Node that transmits a packet

through the system and
2. Receiver node. Node that receives a packet

and removes it from the network.

For example, we can have 3 nodes in a system and the
activities of each node are sending, receiving, and passing a

packet. Figure 5.1 show a sample of communication network.

- 15 =

Figure 5.1 Sample of communication network

From Figure 5.1, nodes A,B, and C are both senders and
receivers. For example, node A sends packets through the
transmission lines to nodes B and C and also receives packets

sent from nodes B and C.

Now, we try to study the behavior of a communication
network system by wusing simulation. The model for our

communication network is represented by a simulation network.

The simulation network contains three types of nodes:

Originator node. An originator node

represents a sender node. This node
generates packets and routes them into the
system. An originator node contains three
types of variable. Minwait and Maxwait are
used to compute next creation time of new
packet, Exit represent a target node from

originator node.

Destroyer node. A destroyer node represents
a receiver node. This node destroys a packet

from the system.

Delay node. A delay node represents a
transmission 1line. This node 1is used to
represent delay in transit from node to node.
A delay node contains four types of variable.
Holdmin and Holdmax are wused to compute
service time, Exits represents list of target
nodes from delay node, and Exprob represents

probabilities of target nodes.

If we model a transmission line by delay node, from

Figure 5.1 we can create a simulation network model that is

shown in Figure 5.2

ORG. # 1

DEL. # 1 DES., # 1

O

ORG. # 2

o

ORG., # 1

O

DEL. # 2 . DES., # 2
e

> €

DEL. # 3 DES. # 3
TR

> ______j

Figure 5.2 Simulation network model

- 18 =

CHAPTER 6

STATIC DESCRIPTION OF THE SIMULATION NETWORK

CHAPTER 6
STATIC DESCRIPTION OF THE SIMULATION NETWORK

A network exists whenever two or more elements interact
with one another. A network can also be defined as |
ponsisting of nodes and 1links. Figure 6.1 1illustrates a
simple network consisting of two nodes and a single link. It
shows that the two nodes communicate with one another or

alternatively, some information flows between the two nodes

via the link.

Figure 6.1 A network consisting of two nodes and a link

Figure 6.2 represents a more complex network consisting
of four nodes and four links. This illustration shows that
each node is a sender and receiver of information, For
example, node A is a sender who sends information to node B

and C and it also be a receiver who receives information from

= 19 =

node B and C.

Figure 6.2 A network consisting of four nodes and four links

Qur simulation network system is one kind of a network.

There are three components of a simulation network

I. Packets. Packets are the entities that fldw
through the network. The information of interest about a
packet is

1. Time that packet entered system.
2. Transit time of packet in system,
3. Node at which packet entered the system.

4, Node at which packet left system.

- 20 -

II. Nodes. There are three kinds of nodes

1. Originator node. This node <creates packet
and sends to another node,

2. Delay node. This node 1is a single server
queue,

3. Destroyer node. This node receives a packet
and removes it from the system.
III. Exit path. Exit paths indicate possible flows of

packet from node to node.
Detailed description of simulation network components.

The simulation network model consists of an
interrelated set of nodes and exit paths. The nodes and exit
paths can be considered as elements that are combined and
integrated into a system description. Packets are routed
along the exit paths emanating from nodes. The exit path
taken by a packet is determined randomly. The probability of
choice of each exit path emanating from a node is a parameter

of that node.

With this brief background, let us proceed to describe

the network symbols and definations of nodes in the system.

An originator node generates packets and routes them
~into the system over one path that emanates from the
originator node. ‘The time for the first packet to be created

by each originator node 1is initialized to be 0.0. A next

- 21 -

creation time for a new packet to be created is specified by
the parameters Minwait and Maxwait. The next creation time
is current-time + R, where R is a random variable, uniformly

distributed on the interval [Minwait,Maxwait 1.

The exit path from the originator node to an other node
in the system is specified by the parameter Exit, the number

of the target node on the path.

The target of the exit path, Minwait, and Maxwait for
each originator node are part of the network model. If we
have another network model, we have a different set of these
numbers. We use the character '0O' to represent an originator
node and a positive integer (1,2..,n) to identify each
originator node. Figure 6.3 illustrates the symbol for an

originator node and summarizes the parameters.

Figure 6.3.a gives an example of an originator node.
Originator node number is 1, it has an exit path to delay
node number 2 and time until creation of the next packet 1is

in the interval 2.0 - 4.0 .

Figure 6.3.b gives an another example of an originator
node. Originator node number is 2, it has an exit path to
destroyer node number -5 and time until creation of the next

packet is in the interval 3.0 - 5.2 .

- 22 -

Exit : Target node number of exit path.
Minwait : Minimum time until next packet creation.
Maxwait : Maximum time until next packet creation.

Figure 6.3 Symbol and the parameters for each originator node

0 # 1
2.0
2 Exit = 2
Minwait = 2.0
4,0 Maxwait = 4.0

Figure 6.3.a Symbol and the parameters of an originator node
number 1

Ot 2
3.0
Exit = =5
Minwait = 3.0
5.2 Maxwait = 5.2

Figure 6.3.b Symbol and the parameters of an originator node
number 2

A delay node is used to represent delay in transit from
one communication node to another. The delay node is a
location in the network where packets wait for service. When
a packet reaches a delay node, the service time in that node
is computed. If the packet must wait for service, it is
stored in the delay queue. The order in which the packets
are served from the delay queue for that delay node is
specified rank on first-in-first-out (FIFO). Therefore, we
have two kinds of delay

1. Service delay. The computed service time.

2. Delay in queue. The time that a packet waits in

the delay queue.

The service time for a packet is S, where S is a random
variable, uniformly distributed on the interval [

Holdmin,Holdmax].

The parameters Exprob and Exits specify the probability
that a packet leaving this node will take a particular exit
path. In this implementation, it is possible to specify wup
to 5 exit paths from each delay node. If less than 5 exits
are defined for a particular node, we enter 0 and 0.0 for the
number and probability respectively of the unused exit path.
To decide which exit path that a packet will take from this
delay node we use a random number to choose one of the exit

paths from the exit list. More detail of how to compute an

- 24 -

exit path is discussed in Chapter 8.

The targets of the exit paths and their probabilities,
Holdmin and Holdmax for each delay node are part of the
network model. Different network models have a different
value of these numbers. We use the character 'D' to
represent a delay node and a positive integer (1,2,...,0) to
identify each delay node. Figure 6.4 illustrates the symbol

for a delay node and summarizes the parameters.

Figure 6.4.a gives an example of a deiay node. The
delay node " number is 2, it has 5 exit paths to other delay
nodes 1, 2, and 3 and to destroyer nodes -3, and -4 . The
probabilities for exit paths are 0.2,0.3,0.3,0.1,0.1
respectively. The service time in delay node for the packet

is in the interval 3.0 - 4.5 .

Figure 6.4.b gives an another example of a delay node.
The delay node number is 7, it has 3 exit paths to other
delay nodes 2, and 5 and to destroyer nodes -10. The
probabilities are 0.3, 0.5, and 0.2 respectively. The
service time in delay node for the packet is in the interval

2.0 - 2.9 Y

- 25 -

Exits
Exprob

Holdmin
Holdmax

D#3

Holdmin

{prob

Ex

Holdmax

list of exit paths to other nodes in the system.
probabilities for exit paths of this delay node.
minimum service time in this delay node.
maximum service time in this delay node.

Figure 6.4 Symbol and the parameters for each delay node

D # 2
1 lo.2
5.0 12 lo.3
3 0.3
4.5 |-3 |0.1
=4 _10.1

Exits
Exprob

Holdmin
Holdmax

Figure 6.4.a Symbol and the parameters of delay

D#T
2
2.0 5
-10
2.9 0

o

0.9
0.4

0.4
O.

Exits
Exprob
Holdmin
Holdmax

Figure 6.4.b Symbol and the parameters of delay

- 26 -

node number 2

o o n

O owwu
(N |
L] —
Ul O
o
N

PO

node number 7

A destroyer node represents a node which receives

packets and removes them from the network. For this network
model, the destroyer node is represented by character 'K' and
we use a negative integer (-1,-2,...,-n) to identify each
destroyer node. The reason that we use negative integers 1is
to make the destroyer node numbers different from delay node
numbers. In this way, exit path targets can be determined
from the number alone. Figure 6.5 illustrates the symbol for

a destroyer node.

K # -1

Figure 6.5 Symbol for each destroyer node

To illustrate a simulation network, Table 6.1 gives the
parameters for a network with 2 originator nodes, 3 delay
nodes and 5 destroyer nodes. Then Figure 6.6 shows the

sample of simulation network graphically.

- 27 -

Originator node
Originator node no. Exit Minwait Maxwait
1 1 2.0 4.0
2 2 3.0 5.0
Delay node
Delay node no} Exits Exprob Holdmin | Holdmax
1 2 3 -1-2-41].3.2.1.2.2 3.0 6.0
2 3 -5<=1=-2 0.4 .1.3.2.0 2.0 5.0
3 -3 -u O 0 0 05 '5 00 .0 .0 ’4.0 7-0
Table 6.1 The parameters for originator and delay node in

network model

- 28 -

K#-1

o3
52

2
3

3.0

D#1

I
s
~
e ~
~ \\ s
\Jl\lll ~
T -~
~ - -
\l\\"’
- ~

K#=3

.2

-2

fo
4,0

5.0

3 0

R =

B4 g

“I\‘ -~

el '~ ns
ey

- "l
M

fo
5.0

J

I}

A e a

€=~

«5

5
.0
.0
.0

-3
-4
0
0
0

0

4
7.0

- 29 -

Figure 6.6 Sample of simulation network

CHAPTER 7

DYNAMIC DESCRIPTION OF THE SIMULATION NETWORK

CHAPTER 7
DYNAMIC DESCRIPTION OF THE SIMULATION NETWORK

The activities that occur in our simulation network are

shown in Figure 7.1

Scane event queue Stop
M Find next event
HEH
T Y
Apply "E" and
N Update
—¥change system =
state statistics
y
nvents Time update clock
E1 t1
. , Predicts
a0 £2 simulated new -
8 £3 system clock event
B t4
)) <: update event gueue
En tn

Figure 7.1 Model for Simulation Network Activity

- 30 -

The technique we will use simulation is discreate event
simulation. With this method we do not simulate the
continuous behavior of a system, only a very specific class
of events in the life of the system. We will observe only
the events that change the state of the system. The possible

types of events that will change the state of our simulation

network are

1. Create Event. Create a new packet at an originator
node and immediately send it to a delay or a destroyer
node.

2. Leave Event. Packet 1leaves a delay node going to
another delay or destroyer node.

3. Stop Event. Stop the simulation program.

The first 2 events that change state in this system can

be shown in Figure 7.2

Create event Leave event

riginato »f Delay node estroye
node ode

Figure 7.2 Events and State in the System

- 31 -

A data structure, called the event queue, contains a
1ist of all the events to be processed and keeps them sorted
by the time they occur. An example of the event queue is

shown in Figure 7.3:

Event —3 Event a Event b Event ¢ Event d
Time of ——’ 3.8 4‘06 7.9 805 o o & 00
Occurrence

Current event pointer ("the clock")

Figure 7.3 List of events in event queue

The highest level of this simulation program can now be
explained in terms of the event queue and its events. We
move the current event pointer (sometimes called the
simulation 'eclock') to the next event in the event queue and
process that event by changing the system according to the
specifications of that event. We continue this until-a stop
event 1is encountered. For example, 1in the preceeding
diagram, after completing Event a, we would move the current

event pointer to time 4.6 and begin processing Event b.

- 32 -

Finally, we must decide how new events will be placed
in the event queue. 1Initially, a stop event is put into the
event queue as well as a create event for each originator
node. These will be placed there by the procedure Initsys
and Initialori. How are other events placed on the event
queue? Each event we have defined will create zero or more
additional events so that new events are constantly being
created. In fact, one of the major purposes of the event
procedures will be to schedule new events and place them into
the event queue. Thus the simulation will terminate not by

running out of events but by reaching the stop event.

There is- another detail about simulation that will
affect the top level of the program. Simulation is a design
tool. This means that we do not know beforehand how to set
certain parameters so the system will behave properly.
First, we try a set of parameters, note how the system

behaves, and adjust the parameters accordingly. Figure 7.4

shows the model of simulation program usage.

Initialize Run the Study Reset the parameters

system .— Simulation . the o to try to improve
parameters program output system performance

«———--

Quit
Figure 7.4 Model of Simulation Program Usage

Therefore, the simulation program must be able to run
frequently, with a different set of parameters at each time.
To this end, The set of parameters will be read from an input
data file and we can change those parameters by changing the

original file or specifying a different file.

Now let us look at the four event processing routines:
Createpacket, Arrivedelaynode, Arrivedestroyernode, and
Leavedelay. Before we begin to write these routines, we must
make an important decision. Exactly what output results do
we want the simulation model to produce? What statistics do
we need to understand the behavior of the system? Wé have

chosen the following ten.

- 34 -

Number of pack
node.

Total number
originator nod
delay node.
Total number o
all delay node
node.

Total number
destroyer node

node.
8. Average delay
9. Average trans

creation to

10. Average transi
wide.
There are fields in each

to compute these statisties

Originator node

- Count. Counts packets
Delay node

- Mark. Total time that
node.

- Count. Counts packets

Destroyer node:

- Totaltime. Total tran
- Count. Packet counter

ets created by each ori

ginator

of packets created by all

es.

f packets that passed
s.

of packets destroyed
SI

time in all delay nodes.

it time for packets

Number of packets that pass throﬁgh each

through

Number of packets destroyed in each destroyer

by all

Average delay time for a packet at each delay

(from

destruction) by destroyer node
where destroyed.

t time for a packet,

node to collect data in

created.

packets have waited in

in delay node.

system

order

delay

sit time for all packets.

- 35 -

Packet ¢

- Born. Time that packet was created.

- Wait. Transit time of packet in system.

In this simulation network system, The activities
associated with each type of event are

1. Create event (Procedure C(Createpacket) : The
following activities may occur for this event

(a) Next creation is event scheduled.

(b) Leave delay node is scheduled.

(¢) Enqueuing in a delay queue.

(d) Statisties updating.

2. Leave event (Procedure Leavedelay) : The following
activities may occur for this event
(a) Exit target is chosen.
(b) Leave delay node is scheduled
(¢c) Enqueuing in a delay queue.
(d) Remove packet from system if sent to a destroyer
node.

(e) Statistics updating.

The summary of the event scheduling process is shown in

Figure 7.5

i |
‘ m m
| Create Event ————m——p ILeave EveNt === To Destroyer

From Originator node From Delay node node

Figure 7.5 Shows the event scheduling process

The procedures dependence for this simulation network

is summarized in Figure 7.6

SIMULATOR
Read Init Stopsim Reportheading | Listeventqueue
data sys l
|
Open Cutput Getnext Qreatey Leave Report Finalreport

file data event packet] delay
=

|
—-T —————— [—J—i—d-r_—— -———r-—— -
Creates zxitpath A Insertevent Arrivedelay
queue node
Arrives Insert Delete Arrives

Destroyernode

Figure 7.6 Procedures dependence for the simulation network

- 37 -

CHAPTER 8

DOCUMENTATION FOR SIMULATION NETWORK PROGRAM

CHAPTER 8

DOCUMENTATION FOR SIMULATION NETWORK PROGRAM

This program is used to simulate the behavior of a
communications network system using discrete event
simulation. The program contains 26 procedures and 1
function with approximately 1,200 1lines of code (with
comments, about 1,561 lines). It exemplifies the top-down
design of programs and data structures. This program must be
able to be run frequently, with a different set of parameters
each time. The first important thing for this program is how

to define the data structure for the program.

In this Network System, we have three kind of nodes
called Originator, Delay, and Destroyer nodes. We specify
the maximum number of each type of node at the begining of
the progranm. Those numbers are symbolic constants. We can
change them if we want to model a larger system. In the
present form of the program we allow 3 originator nodes, 7

delay nodes, and 10 destroyer nodes.

We define data structures for each of these parts of

the simulated system : clock, event types, event queue,

- 38 -

originator nodes, delay nodes, destroyer nodes and packets.
The details for these data structures are described as

follow.

Clock

The simulation network model has a function managing
simulation time. The times that are involved in this network
model are creation time for new packets and end of service
time for a packet in a delay node. These times are what we
mean by 'event time'. The clock is the pointer that points
to the current event in the event queue and is continually
updated during the simulation run. After completing the
processing of the first event in the event queue, we move the
clock to the next event and process that event by changing
the system according to the specifications of that event.
The initial value of the c¢lock 1in our simulation network

model is 0.000 .

Event type

This program is concerned about events that change the
state of the system. So, we define an enumeration data type
for the possible types of events that can occur. For this

system we define

Type

Act = (Create,Leave,Stop);
Var

Action : Act;

- 39 -

The three kinds of events are as follows

1. Create event. Create a new packet at an
originator node and send it to the next node
in the system.

2. Leave event. A packet leaves a delay node
going to another delay node or a destroyer
node.

3. Stop event. This event stops the simulation.

Each event will be represented by a single record

containing the following four pieces of information

1. Action. The type of event.
2. Time. Time that the event will occur.

3. Parm. Number of an originator, delay or
destroyer node.

4, Pack. Pointer to the packet involved in the
event.

This data structure is defined. with the following

declarations

Event

Type

Eventptr = Eventnode
{pointer to an event in eventqueuel}
Eventnode =
Record{record of event}
Action : Act;
Time : Real;
Parm : Integer;
Pack : Ptr;
End; {Record Eventnodel

queue

The event queue is a special data structure. It

contains a list of all events to be processed and keeps them

- 40 -

sorted by the time they will occur. We use a linked

structure to keep a linear list of pending events.

An array is probably an inappropriate data structure
for a event queue, since we have no prior knowledge of how
many events may be on the event queue at any one time.
Therefore a linked 1list structure 1is the best way to
represent the event queue. By using linked list we have no
limit for the maximum number of events in the event queue.

The following diagram shows the structure of the event queue.

Event queue

N\
- N
o—1—>» typgdtime |parm Pacl o\ lg..... —» typejtime | parm Fagqyrr,
- ptr ptr
Front of N\ J
Eventqueue v

single event node

Figure 8.1 The structure of the event queue

The structure 1is defined through the following

declaration

Type

Eventqueue =
Record
Efront : Eventptr;
{Pointer to the first event in eventqueue}
Eback : Eventptr;
{Pointer to the last event in eventqueuel
Ecount : Integer; {Counter event in eventqueuel
End; {End of record eventqueue}

In order to avoid having to pass parameters from
procedure to proceduré we will define 3 important record
structures named Originator, Delay and Destroyer to represent
originator nodes, delay nodes and destroyer nodes

respectively. The definition for each record will 1look 1like

this
Delay node
Type
Delay =
Record
Q ¢ Queue;
{Pointer to wait queue for this delay node}
Exits ¢ Array [1..Noexits] of Integer;

{Exits list of target node}

Exprob : Array [1..Noexits] of Real;

{Exits probability of target node}

Holdmin : Real;

{Minimum service time in delay node}l

Holdmax : Real;

{Maximum service time in delay node}

Mark : Real;{Total service time in delay node}l
Aver : Real;{Avg.service time in delay node}
Waited : Real;

{Service time for a packet in delay node}

Wait : Real;{Waiting time in delay queue}l
Last : Real;

{Time that last packet leave delay node}

Count : Integer;{Counter packet in delay node}

Calendar : Eventptr;{Pointer event in event queue}
End; { Record Delay }

- 42 -

We name each delay node by positive integer and we
define an array [1..N] of individual delay node records.

Each delay node has a queue for holding packets waiting
for service called the delay queue. This is a FIFO queue.
We implement a delay queue as a linked 1list of individual
packet records. We cannot use an array to implement a delay
queue because we have no idea what the maximum number of
packets in a queue will be at any one time. For example if
we declare our array to contain 100 packets for each delay
node, what would happen if there were 101 packets waiting in
the delay node? The following diagram shows the structure of

a delay queue.

An individual
packet record

A
' h)

A

- » Info . Info t—pee M Tnfo Til

Front \)

The queue

Figure 8.2 The structure of a delay queue

The structure is defined through the following

declaration.

- 43 -

Type

Queue =
Record
Front : Ptr;
{Pointer to the first packet in delay queue}
Back : Ptr;
{Pointer to the last packet in delay queuel}
count : Integer;{Counter packet in delay queuel
End; {End of record queue}

Originator node

Type

Originator =

Record
Exit : Integer;{Target node from Ori.}
Minwait : Real;
{Minimum time until next packet creation}
Maxwait : Real;
{Maximum time until next packet creation}

Count : Integer; {Counter packet created}
Curtime : Real; {Next packet creation time}
Calendar : Eventptr;

{Pointer to the create event in the event
queuel

End; {Record originator}
We name each originator node by positive integer and we

define an array [1..N] of individual origintor records.

Destroyer node

Type

Destroyer =
Record :
Transit : Real;
{Transit time for must recent packet}
Totaltime : Real;
{Total time for all packets since created
until destroyed}
Count : Integer;
{Counter of packets destroyed}
End; {Record Destroyer}

- 44 -

We use negative integer name the destroyer nodes. This
allows us to distinguish delay nodes and destroyer nodes by
name when specified as the destination for a packet. So we

define an array [=N..=-1] of individual destroyer records.

The goal of this program is to collect information
concerning the performance of the simulated network.
Therefore, the waiting time in each node and the total time
for transit of the packet from creation to destruction are
very important. We incorporate these value as fields in the
record structure for the packet. We also need to keep track

of certain information for debugging purposes.

Packet :
Packets are the entities that flow through the network.
Each packet will be represented by a single record containing
the following five pieces of information
1. Born. Time that packet was created.

2. Marks. Waiting time of packet in each delay
node.

3. Wait. Transit time of packet since create
until destroy (used in debugging report).

4y, Org. Originator node that created the
packet.

5. Nex. Time that next packet leave from delay
queue (used in debugging report).

6. Pacno. Serial number of this packet relative
to its originator node. Org and Pacno
uniquely identify each packet.

- 45 -

These data structures is defined with the following
declarations.

Type

Ptr = Packet;

Packet =

Record
Born : Real;
Marks : Real;
Wait : Real;
Org : Integer;
Nex : Real;
Pacno : Integer;

End; {Record Packet}

In the preceding paragraph, we talked about three evenﬁ
types in the system, they are Create events, Leave events,
and the Stop event. The highest 1level of this simulation
program can be explained in terms of the event queue and its
events. Therefore, the main loop of this program and the
routines involved in each kind of event can be described as .
follows:

Repeat
Get next event from eventqueue;
Update clock;
Perform action;
If debug requested then
Report after performed action;

Until action = stop

Create event
This event creates a new packet at an originator node

and send it to the next node in the system. The loop of this

event' can be described as follows:

- 46 -

Begin
Create a packet;
Compute next creation time;
Schedule next creation time in the event
queue;
Send packet to a delay or destroyer node;
Compute service time or transit time of
a packet;
Schedule service time in the event queue;
End;

The routines involved in a Create event are

1. Creates. This routine computes the next
creation time for new packet.

2. Insert. This routine puts a packet in a
delay queue of a delay node.

3. Arrives. This routine computes service time
of a packet at a delay node.

4, Arrivedelaynode. This routine sends a packet
to a delay node.

5. Arrivedestroyernode. This routine sends a
packet to a destroyer node.

6. Inserteventqueue. This routine inserts a new
event, keeping order by time, into the event
queue.

Leave event :

This event sends a packet from delay node to another
delay node or a destroyer node. The loop of this évent can
be described as follows:

Begin
Compute exit path from delay node;
Remove packet from delay node;
If packet is sent to delay node then
Call procedure Arrivedelaynode;
Else
Call procedure Arrivedestroyernode;
End;

- 47 -

The routines involved in a leave event are

1. Exitpath. This routine computes exit from a
delay node.

2. Delete. This routine removes a packet from a
delay queue of a delay node.

3. Arrives. This routine computes service time
of a packet at a delay node.

4, Arrivedelaynode. This routine sends a packet
to another delay node.

5. Arrivedestroyernode. This routine sends a
packet to a destroyer node.

6. Inserteventqueue. This routine inserts a new

event, keeping order by time, into the event
queue.

Stop event
The routine involved in Stop event is

1. Stopsim. Routine stop simulation program.

Arrivedelaynode
This procedure sends a packet to a delay node. The

loop of this procedure can be described as follows:

Begin

If delay queue is empty then
Compute service time for a packet;
Schedule into the event queue;

Else

Compute waiting time in delay queue;
Schedule into the event queue;
Schedule another leave event into
the event queue;

Arrivedestroyernode @
This procedure sends a packet to a destroyer node. The
loop of this procedure can be described as follows:
Begin
Compute transit time for a packet;
Update total transit time for all
packets;
End;
Those routines are some parts of simulation program,
We are now in a position to explain the top level of the

simulation program. This level consists of eleven procedures

as follows:

———h
.

Openfile
Readdata

Outputdata

*

Initsys

Getnextevent

Createpacket

Leavedelay

Reportheading
Report

o 0 [0 I [o TR | E— S VS] N
*

-—

Listeventqueue

—
-
.

Finalreport

Procedure Openfile

This procedure opens the input data file and output
data file. This program will accept different input data
files. The user can have one, or more than one, input data
file with different values of data. The user specifies the
input data file interactively at the begining of the program.
The user can also specify an output data file interactively.
For example, if we have two input data files called A.DAT and
AA.DAT we can select one of those files to run the program
and for the results of the program we can named the output
file called B.DAT or something else. The user may choose how

to name the output file.

Procedure Readdata

This procedure reads data for originator and delay
nodes from the input data file. The format of input data
file is described in Chapter 9. The data for éach originator
node are three fields of an Originator record : exit,
minwait, and maxwait. The data for each delay node are four
fields of a Delay record : exits, exprdb, holdmin, and
holdmax. From the input data file we also read the number of
originator nbdes, number of delay nodes, and number of exits

from a delay node.

Procedure OQutputdata

This procedure prints statistical summaries for a

- 50 =

simulation run.

Procedure Initsys

This procedure initializes the system simulation, and
construct data tables for originator and delay nodes. It
also requests an initial value of the seed in order ¢to
generate random numbers, and requests an option for report
after performing action of the event. This procedure also
ijnitializes summary values for all originator, delay, and

destroyer nodes.

Procedure Getnextevent
This procedure gets the next event from event queue,

removing it from the front of the event queue.

Procedure Createpacket

This procedure is performed for a Create event. It
allocates storage for a new packet. It also inititalizes
fields in the new packet then, it schedules a creation time
for another packet. After the packet has been created this
procedure routes it to a delay or destroyer node immediately

depending on the exit parameter of the originator node.

If the packet goes to a delay node and the delay queue
is empty, determine the leaving time from this delay node for
that packet and schedule a Leave event. If delay queue is

non-empty compute the waiting time that packet wait in delay

- 51 =-

queue, then determine the leaving time for that packet and

also schedule a Leave event into the event queue.

If the packet goes to a destroyer node, compute the
transit time for that packet and update total transit time

for this destroyer node.

Procedure Leavedelay

This procedure removes a packet from a delay node
routing it to another delay node or to a destroyer node.
Another procedure, Exitpath computes the exit path for a
delay node. If the exit number is positive, it means send
the current packet to another delay node. In this case,
procedure Arrivedelaynode 1is called. If the exit number is

negative, it means send the current packet to a destroyer

node. In this case, procedure Arrivedestroyernode is called.

Procedure Reportheading
This procedure constructs the heading for the debug

report.

Procedure Report
This procedure reports after the occurrence of an

event.

Procedure Listeventqueue
This procedure lists all of the events 1in the event
queue.

- 52 -

Procedure Finalreport
This procedure produces the summary report of the

simulation network at the end of a simulation run.

At the next level of detail, the procedures
Createpacket and Leavedelay define a total of eight
second-level modules. These modules fall into four classes
as follows :

(a) Procedures that produce random choices.

- Creates. Compute the creation time for next
packet.

- Arrives, Compute the service time for a
backet in delay node.

- Exitpath. Compute the exit path from a delay

node.

(b) Procedures that manage the delay queue.
- Insert. Adds the new packet to the end of the
delay queue.
- Delete. Takes the first packet from the front

of the delay queue.

(e¢) Procedures that send the packet to delay or
destroyer node.
- Arrivedelaynode.

- Arrivedestroynode.

- 53 -

(d) Procedure that manages the event queue.

- Inserteventqueue. Adds a new event to the

event queue.
We give more details about some procedures as follows

(1) - Procedure Creates

This procedure computes the creation time of the next
packet at an originator node. This creation time is chosen
randomly from the interval [Minwait,Maxwait] with wuniform

distribution.

(2) - Procedure Arrives
This procedure computes the service time for a packet
in a delay node. This time value is chosen randomly from the

interval [Holdmin,Holdmax] with uniform distribution.

(3) - Procedure Exitpath

This procedure determines the exit path from a delay
node. The exit path is chosen randomly from an array of
Exits [i], the probabilities of choosing Exits [i] is a array

of Exitprob [j]l. This is implemented as follows

A pseudo random number U, wuniform from (0,11, is
generated. Then substract each Exitprob [j] from U one at a
time. If the value after substraction is greater than zero,
continue by using next Exitprob [j] until the value is less
than or equal to zero. The corresponding Exit [i] 1is the

- 54 -

chosen exit path.

The three routines Creates, Arrives and Exitpath use a
dependent routine called random(x,y). This function will

generate a random real number, r, in the range x <= r <= Y.

(4) - Procedure Arrivedelaynode

This procedure inserts a packet at the end of a delay
queue and counts number of packets in a delay node. If delay
queue is empty, it computes the service time and leaving time
for a packet then, schedule a Leave event for that packet.
If delay queue is not empty, this procedure computes the
service time and determines the leaving time for that packet

and also updates the waiting time in a delay node. Then it

schedules a Leave event for that packet.

(5) - Procedure Arrivedestroynode

This procedure computes the transit time for a packet
and updates the total transit time in a destroyer node. It
also counts the number of packets that are destroyed in this

destroyer node. Then it removes a packet from the system.

(6) - Procedure Inserteventqueue
This procedure inserts a new event into the event
queue. The new event is placed according to the time of that

event, so that the event list is ordered by the time field.

- 55 -

Finally, we describe the body of this progran,

sometimes called the Main Program. The main program for our
simulation network can be broken down into four parts as

follows

1. Read data for simulation run. This part
requests the maximum time for the simulation
run and also reads the data from the input

data file.

2, Initialize the simulation system. This part
initializes values for all originator nodes,

delay nodes, and destroyer nodes.

3. Main loop to perform the actions of each

event and also update the simulation clock.

4, Print results of the simulation run.

The details of coding for the main program are shown in

Table 8.1

- 56 -

Begin (* begining simulation program %)
Writeln('Welcome to the simulation system for communication
network');
Repeat
Repeat
Writeln('Please enter maxtime..the total
simulation run time');
Readln(Maxtime);
If maxtime > 0.0 then
Gooddata := True
Else
Begin
Gooddata := False;
Writeln('You made an error in the input,);
Writeln('Maxtime must be real and
non-negative number');
Writeln('Please try again');
End;
Until Gooddata;
Openfile;
Readdata; (¥Read data from input data file¥*)
Initsys;(*Initialize the system simulation¥*)
Repeat
If eveq.efront.time <= maxtime then
(*simulation clock <= maxtime¥*)
d := eveq.efront;
eveq.efront.time := d.time
Case action of
Create : Createpacket;
Leave : Leavedelay;
Stop : Stopsim;
End; (* of case ¥)
Report; (*Report after perform action¥)
Listeventqueue; (*show events in event queue¥®)
Until action = stop;
Listeventqueue;
Finalreport;(¥*print final results¥*)
Writeln('Do you wish to run the
simulation network again..');
Writeln('for a different time value, or
different input data file ?');

Write('Type Y<es>, or N<o> : ')
Readln(Select);
Done := (Select = 'n');

Until Done;

Wwriteln('Exit from the simulation program, thank you');
End. (* End of simulation program ¥)

Table 8.1 Coding Main Program List of Simulation Network

- 57 -

This completes the documentation for the simulation

network program. Figure 8.3 gives flowcharts for the

components.

A complete 1listing code of the simulation network

program appears on page 60 - 84.

Read data

!
Output data

3
Initialize
|
¥
Update Clock

}

Determine
next event

¥inalreporty

Stop
Create
Create new packet Packet leave delaj
and schedule node and schedule
next creation tims leaving *time

Report action
-

R or
Listeventqueue

|

Figure 8.3 Flow Chart for the Simulation Network Program

- 59 -

FPROGRAM SIMULATIONCINFUT,OUTFUT» INFILE,OUTFILE)S
{ SIMULATION - SIMULATE COMMUNICATION NETWORK SYSTEM} AUG.15,1983

THIS IS A PROGRAM TO SIMULATE THE BEHAVIOR OF A COMMUNICATION NETWORK SYSTEM
USING DISCRETE EVENT SIMULATION. THE SYSTEM IS DESCRIBED IN CHAPTER 3 OF
THIS THESIS THAT SUBMIT TO MATH. AND COMFUTER SCIENCE DEFARTMENT» ATLANTA
UNIVERSITY» FOR A GRADUATE STUDENTF BY TAKSIN PLABJANG. Y

CONST

TYFE

S5 (X NUMBER EXITS OF DELAY NODE X)
$ (% NUMBER OF ORIGINATOR NODES X)
(X NUMBER OF DELAY NODES Xx)

105 (% NUMBER OF DESTROYER NODES X)

= 0.003 (% SIMULATE START TIME X)

NOEXITS
ORIGS =
DELAS =
DESTS =
STARTTIME

N

ACT = (CREATEsLEAVE,STOF)}
(X FOSSIBLE TYPES OF EVENTS THAT CAN OCCUR X)

FPTR = "PACKET}

PACKET =

RECORD
BORN ! REALj; (X TIME THAT PACKET CREATED X)
ORG ¢ INTEGER; (% ORIGINATOR NODE THAT CREATE PACKET %)
MARKS | REAL; (X WAITING TIME IN EACH DELAY NODE %)
WAIT ¢ REALJ (% TOTAL TIME THAT WAIT IN DELAY NDDES X)
NEX ¢ REAL} (¥ TIME THAT NEXT FACKET LEAVE DELAY QUEUE %)
PACND ¢ INTEGER? (% NUMBER OF PACKET HAD BEEN CREATED X)
NEXT ¢ FPTRj

ENDF (¥RECORD FACKETX)

EVENTFTR = "EVENTNODE/

EVENTNODE =
RECORD
ACTION ¢ ACTSH
TIME ¢ REALS (% TIME OF OCCURRENCE %)
FARM ¢ INTEGER$ (XNUMBER OF ORIGINATOR,DELAY,OR DESTROYER NODEX)
FACK ! PTR}
LINK ! EVENTPTRS}
END; (XRECORD EVENTNODEX)
QUEUE = (XDATA STRUCTURE FOR KEEP RECORD OF FACKET®)

RECORD
FRONT ¢ PTRS$
BACK ¢ PTRj
COUNT ¢ INTEGER$ (XCOUNTER FACKET IN QUEUEX)
END? (XRECORD QUEUEX)

EVENTRUEUE = (¥DATA STRUCTURE FOR KEEP EVENTS OF THE SYSTEMX)
RECORD . -
EFRONT ¢ EVENTFTR
EBACKR ¢ EVENTPTR#
ECOUNT ¢ INTEGER; (XCOUNTER EVENT IN EVENTQUEUEX)
ENDs (XRECORD EVENTQUEUEX)

ORIGINATOR =

RECORD
EXIT ¢ INTEGER#F (X EXIT TO DELAY NODE %)
MINWAIT ¢ REAL}S (X MINIMUM TIME UNTIL NEXT FACKET CREATION %)
MAXWAIT ¢ REALF (K MAXIMUM TIME UNTIL NEXT PACKET CREATION ¥X)
COUNT t INTEGER3 (¥ COUMTER FACKET CREATED %)
CURTIME ¢ REAL} (% TIME THAT CREATE FACKET X)
CALENDRAR ¢ EVENTFTRY¥

END# (XRECORD ORIGINATOR NODREX)

ORIG = ARRAYL1..0RIGS] OF ORIGINATORY
(XDATA STRUCTURE FOR KEEFP ORIGINATOR NODESX)

DELAY =

RECORD
Q ! QUEUES:
EXITS ! ARRAYC1..NOEXITS] OF INTEGERjJ

(XEXITS LIST OF DELAY NODEX)

EXPROB ! ARRAYL1..NOEXITS1 OF REALS
(XEXITS PROBARILITY OF DELAY NOLDEX)

HOLDMIN ¢ REAL’ (% MINIMUM SERVICE TIME IN DELAY NODE Xx)

HOLDMAX ¢ REALS (k MAXIMUM SERVICE TIME IN DELAY NODE %)

MARK ? REALF (% TOTAL TIME THAT WAIT IN DNELAY NODE X)

AVER ! REAL? (% AVERAGE TIME IN DELAY NODE %)

WAITED ¢ REAL$ (% WAITING TIME FOR A PACKET IN DELAY NODE
BEFORE LEAVING X)

WALT REAL (X WAITING TIME IN DELAY QUEUE X)

[

LAST t REAL’ (% TIME THAT LAST PACKET LEAVE DELAY NODE %)

COUNT { INTEGER# (% COUNTER PACKET IN DELAY NODE X)
CALENDAR: EVENTFTRS

ENDé (XRECORD DELAY NODEX)

DELA = ARRAYL1..DELAS] OF DELAYj# .
(XDATA STRUCTURE FOR KEEP DELAY NODEX)

DESTROYER =
RECORD ’
TRANSIT ¢ REALF (XTRANSIT TIME FOR EACH PACKETX)
TOTALTIME $ REAL’ (XTOTALTIME FOR ALL PACKETS SINCE CREATED
: UNTIL DESTROYEDX)
COUNT ¢ INTEGER#F (X. COUMTER PACKET IN DESTROYER NODE X)
END# (XRECORD DESTROYER NODEX)

DEST = ARRAYLDESTS..—-11 OF DESTROYER}$
(X DATA STRUCTURE FOR KEEP DESTROYER NODE X)

NAMED = PACKED ARRAYL1.,.10] OF CHARj
(x TO IDENTIFIED NAME OF INPUT AND OUTPUT FILE %)

VAR
(% GLOBAL VARIABLES %)

FARMyNUMBER ¢! INTEGERS/
(XSPECIFY NUMBRER OF ORIGINATORsDELAY OR DESTROYER NODE IN EVENTGRUEUEX)
TIME $ REAL; (% TIME OF NEXT EVENT IN EVENTQUEUE *)
ACTION ¢ ACTH (x TYPE OF NEXT EVENT IN EVENTQUEUE X)
CALENDAR ¢ EVENTPTRF (% EVENT INVOLVED IN CURRENT EVENTGUEUE X)
ORI _ ¢ ORIG# (% ARRAY OF ORIGINATOR NODE RECORD USE FOR INITIAL
. VALUE AND POINTER TO ORIGINATOR NODE X)
DEL ¢t DELAF (X ARRAY OF DELAY NODE RECORD USE FOR INITIAL VALUE
i AND POINTER TO DELAY NODE X)
LES t DEST# (X ARRAY OF DESTROYER NODE RECORD USE FOR INITIAL
VALUE AND FOINTER TO DESTROYER NODE X)
EVTIME ¢ REAL’ (X TIME THAT EVENT IS TO BE SCHEDULED IN EVENTQUEUE X)
EVEQ ¢ EVENTQUEUE#? (X FOINTER TO THE EVENT IN EVENTQUEUE X)
A : ACTS (X TYFE OF THE EVENT IN EVENTQUEUE %)
NFTR $ PTR’ (k PACKET INVOLVED IN CURRENT EVENT X)
RANSEED? INTEGERS$
(x INITIAL VALUE OF SEED NUMBER FOR GENERATE RANDOM NUMBER X)
NOyXXsYY ! INTEGER# (% INITIALIZE VALUE OF NODIIES TYPE IN THE SYSTEM X)
DELNOORINGyELNOS, DESNOsEXNOsNOS ¢ INTEGERS
(¥ SPECIFY NUMBER OF NODES TYFE IN THE CURRENT EVENT *)

- 61 -

NODES,NODED : PACKED ARRAYC1..10] OF CHAR?

(k SPECIFY NODE TYPE IN THE SYSTEM X) .
INFsQUTF ! NAMEDF (x TO IDENTIFY NAME OF INPUT AND OUTFUT FILE %)

INFILEyOUTFILE ! TEXTS
(X OPEN INFILE FOR READN STATISTICAL DATA» AND DUTFILE FOR RESULTS OF
THIS SIMULATIOM FROGRAM X)

(% MAIN BLOCK LOCAL VARIABLES X)

DONE ! BOOLEAN; (X% BOOLEAN FLAG TO SIGNAL COMPLETION X)

NO3 ¢ INTEGER$ (% NUMBER OF EXIT FROM ORIGINATOR NODE %)

NO2 ¢ INTEGERF (% NUMBER OF EXIT FROM DELAY NODE X)

TIM ! REALj (x NEXT CREATION TIME FOR MEW PACKET X)

ORIS ¢ ORIG/

(% ARRAY FOR ORIGINATOR NODE RECORD USE FOR SPECIFY ORIGINATOR NODE
THAT INVOLVED IN CURRENT EVENT X)

DELS ! DELA?

(% ARRAY FOR DELAY NODE RECORD USE FOR SPECIFY DELAY NODE THAT INVGLVED
IN CURRENT EVENT %)

DESS ¢ DESTH

(% ARRAY FOR DESTROYER NODE RECORD USE FOR SFECIFY DESTROYER NOLE

THAT INUDLYED IN CURRENT EVENT X)

MAXT ¢ REALj’ (X MAXIMUM TIME FOR SIMULATION RUN X)

1T ¢t REALj (% TIME OF OCCURENCE EVENT X)

TEM4 ¢ REAL (% LEAVING TIME OF THE PACKET FROM DELAY NODE IN |
CASE DELAY QUEUE IS EMPTY X} |

TEMS ! REALS{ (% LEAVING TIME OF THE PACKET FROM DELAY NODE IN
CASE DELAY QUEUE IS NOT EMPTY X))

TEM2 3 REALJ (% LEAVING TIME OF THE PACKET FROM ANOTHER DELAY

’ NODE AFTER COMPUTE EXITPATH, QUEUE EMPTY X)
TEM3 ¢ REALj (% LEAVING TIME FROM ANOTHER DELAY NODE»sIN CASE

QUEUE IS NOT EMPTY X)
NPVAL § EVENTPTR; (% POINTER TO THE EVENT THAT TO BE DELETED FROM
EVENTQUEUE X)
D ¢+ EVENTFTRS (% FOINTER TO THE FIRST EVENT IN EVENTQUEUE X)
PACND ¢ INTEGER#? (% INITIAL VALUE OF NUMBER PACKET IN THE SYSTEM %)
SELECTsSELECT1»SELECT2 $ CHAR# (% USE FOR SELECT ABOUT CONTINUATION %)
GOODDATA : BOOLEANF (¥ BOOLEAN FLAG USED TO VALIDATE INPUT X)

{ OPENFILES :
THIS PROCEDURE OPEN AND RESET DATA FILE FOR STATISTIC DATA OF A COMMUNICA-
TION NETWORK SYSTEM AND ALSO OPEN AND REWRITE QUTPUT FILE FOR THE RESULTS
OF THIS SIMULATION PROGRAM. Y

FPROCETURE OPENFILEj

BEGIN

ENL

WRITELM(‘PLEASE TYPE NAME OF INPUT DATA FILE «.ve’)i
READLNCINF) ¥ .
WRITELNC(INF)§

OPENCINFILEy INFsHISTORY $= OLD)

RESET(INFILE)#

WRITELNJ

WRITELN(PLEASE TYPE NAME OF OUTPUT DATA FILE ...’)7
READLNC(OUTF) #

WRITELN{OUTF)?#

OPEN(DUTFILE,OQUTF,HISTORY 3= NEW)?#

REWRITE(OUTFILE)

WRITELNS

(KOPEN FILEX)

{ UNDERLINE?

- 62 =

THIS PROCEDURE PRINT THE DASHED-LINE USE FOR FORMATTING THE OUTPUT OF THIS
FROGRAM., X :

FROCEDIURE UNDERLINEG#
CONST WIh = 80}

VAR
II § INTEGER?
BEGIN ,
FOR II $=1 TO WID IO
BEGIN _
WRITEC(/=")}
END} :

ENDF (KUNDERLINEX)

. { HEADING? .
THIS PROCEDURE PRINT THE STARS USED FOR FORMATTING THE OUTPUT OF THIS

FPROGRAM,)

FROCEDURE HEADING/
CONST WIDTH = 807

VAR
I ¢ INTEGER}
BEGIN
FOR I := 1 TO WIDTH DO
BEGIN
WRITEC X")# -
ENDj/

END# (XHEADINGX)

{ READDATA?
THIS PROCEDURE READ DATA FROM DATA FILE THAT CONTAIN THE DATA CF 3
ORIGINATOR NODES AND 7 DELAY NODES.
INPUT FARAMETERS 3 .
ORI { 3 FIELDS OF RECORD TYFE NAMED ORIGINATOR CEXITsMINWAIT AND

MAXWAITI
DEL ¢ 4 FIELDS OF RECORD TYFE NAMED DELAY L[EXITS»EXPROBsHOLDMINS
HOLDMAX]
OUTPUT PARAMETERS !
ORI t USE THOSE VALUES TO COMPUTE AND DETERMINE THE ULTIMATE
OVERALL ACCURACY OF THE SYSTEM.
DEL : USE THOSE VALUES TO COMPUTE AND DETERMINE THE ULTIMATE

OVERALL ACCURACY OF THE SYSTEM., ¥

PROCEDURE READDATA}

VAR
INX ! INTEGER# (% COUNTER FOR ORIGINATOR NODES Xx)
INDX + INTEGER; (% COUNTER FOR NUMBER OF EXITPATH X)
ORIGSS»DELASSyMOEXITSS ¢ INTEGER/
(% NUMBRER OF ORIGINATOR,DELAY NODE AND EXITPATH X)
BEGIN
WRITELN(‘READING THE DATA FOR SYSTEM SIMULATION NETWORK')§
WRITELN# : .
WRITELN(‘'FROM DATA FILE THAT CONTAIN DATA OF ORIGINATOR ANDB DELAY NODE’)5§
WRITELNS? .
HEALINGS -
WRITELNS

READLM(INFILEsDRIGSS)7 (% READ NUMBER DF ORIGINATOR NODE X)
FOR INX $= 1 TO ORIGSS LO
BEGIN (% READ IMFORMATION OF CRIGINATOR NODE X)
READLN(INFILEyORICINXILEXIT)?
READLNCINFILEyORICINXI «MINWAIT) ¢
ENnﬁEﬁDLN(INFILE:ORI[INX].ﬁAXNAIT)?
H

READLNCINFILE,DIELASS)$ (% READ NUMBER OF DELAY NODE X)
READLNCINFILE,NOEXITSS)# (% READ NUMBER OF EXITFATH FOR DELAY NODE X)
» FOR INX $= 1 TO DELASS DO
BEGIN (X READ INFORMATION OF DELAY NODE %)
FOR INDX $= 1 TO NOEXITSS DO
BEGIN
READLN(INFILEyDELLINXI.EXITSCINDX])
END3
FOR INDX %= 1 TO NOEXITSS DO
BEGIN
READLNCINFILEyDELLCINX].EXFROBCINDX]) §
END§
READLNCINFILE DELLINXI.HOLDMIN) §
READLNCINFILE, DELLCINXI.HOLEMAX) §
ENDj
END# (XOF READ DATAX)

{ OUTFUTDATA?
THIS FROCEDURE CONSTRUCT THE STATISTICAL TABLE FOR THIS COMMUNICATION
NETWORK SYSTEM FOR 3 ORIGINATOR AMD 7 DELAY MNODES,
INPUT FARAMETERS !
NONE
OUTFUT FARAMETERS ¢
ORI 3 FIELDS OF 3 ORIGINATOR NODES.

[3
*
[}
L]

DEL 4 FIELDS OF .7 DELAY NODRES. 2
PROCENURE OUTPUTDATAG
VAR

KeMyNeIDX ¢ INTEGERF (X% USE FOR COUNTER NUMBER OF NOLDES %)
BEGIN

UNDERL INE?#

WRITELN#

HEADING

WRITELN? WRITELN?# :

WRITELN(‘ORIGINATOR NODE NO,’$20s‘EXIT’ 13, 'MINWAIT' 121, 'MAXWAIT $124)5

WRITELN?

HEADING?

WRITELNS

FOR N := 1 TO ORIGS DO

BEGIN (% WRITE INFORMATION OF ORIGINATOR NODES %)
WRITELN(N:12,0RICNI.EXITI20y0RIENI.MINWAITI201yORICNI.MAXWAITIZ2A01) 5
UNDERL INE$

WRITELNS’ :

END?# :

HEADING#

WRITELN?

UNDERLINES)

WRITELN; WRITELN# UWRITELNF WRITELN? WRITELN; UWRITELNS

UNDERLINES

WRITELN}

HEADING$

WRITELN} UWRITELNG#

WRITE(‘DELAY NODE NO.~’

WRITELN(HOLDMAX 313) 5

WRITELNj/

HEADINGj

WRITELNS

FOR M ¢= 1 TO DELAS DO

BEGIN (x WRITE INFORMATION OF DELAY NODES x)
WRITE(MI?)§
WRITE(’ ‘)i
FOR IDX = 1 TO NOEXITS DO
WRITE(DELCMILEXITSLIDXI3I3) 4

115y "EXITLIST’ $12y ‘EXPROBLIST $20y ‘"HOLDMIN' 2175

- 64 -

WRITEC’ ‘)

FOR IDX $= 1 TO NOEXITS DO
WRITE(DELLCMI.EXFROBLINX]:431)9

WRITELN(DELEMI HOLDMIMNS10:1sDELEMI HOLDMAX$1531) 5
UNDERLINE

WRITELM?

END?#
HEADING# |
WRITELNS
UNDERL INE
WRITELN?

END# (XOUTFUTDATAX)

{ INSERTEVENTQUEUE?

THIS PROCEDURE SEARCH THROUGH THE EVENTQUEUE TO DETERMINE WHERE A NEW
EVENT SHOULD BE PLACED. THEN ADD THIS NEW EVENT TO THE EVENTQUEUE »
KEEPING THE EVENT LIST ORDERED BY THE TIME FIELD.

INFUT FARAMETERS ¢
CALENDAR ¢ POINTER TO A LIST OF O OR MORE EVENTS.
EVTIME ¢ TIME THAT EVENT IS TO EE SCHEDULED IN EVENTRUEUE.
ACTIONTYPE: TYFE OF THE EVENT TO BE SCHEDULED.
MUMBER + NUMBER OF ORIGINATOR,DELAY OR DESTROYER NODE.
FPACK : POINTER TO THE PACKET INVOLVED CMAY BE NILI.
DUTPUT FARAMETERS ¢
CALENDAR : POINTER POINTS TD THE NEXT EVENT INTO EVENTQUEUE:

PRESERVING ORIDERING BY THE TIME FIELD. X

FROCEDURE INSERTEVEMTQUEUE (VAR CALENDAR {EVENTPTRIEVTIME{REAL sACTIONTYFEIACTS

VAR

NUMEBER $ INTEGER§PPACKIPTR) ¥

ECOUNT ! INTEGERj (% COUNTER EVENTS IN EVENTQUEUE X)

EVEN ¢ EVENTPTR} (% TEMPORARY FOR NODE CREATION X)
FyQrRyFNODE § EVENTPTR? (X TEMFORARY USED FOR SEARCH IN EVENTAUEUE X)

BEGIN (XINSERT EVENTQUEUEX)

(X FIRST BUILD A NEW NODE WITH THE FROFER VALUE X)
NEW(EVEN) #
WITH EVEN ~ IO
BEGIN
TIME $= EVTIMES}
ACTION = ACTIONTYPES}
FARM = NUMBER}
PACK != FPACK/
END; (X OF WITH %)

FNODE &= CALENDAR}?
(% NOW SEE WHERE THIS NEW NODE SHOULD BE FLACED AND RESET THE LINKS X)

IF PNODE <> NIL THEN
BEGIN

~ IF EVER.EFRONT = NIL THEN

EEGIN (% FIRST EVENT IN EVENTQUEUE %)
EVER.EFRONT = PNODE;
EVEQ.EBACK = FNODE;
PNODE".LINK $= NIL}#
END
ELSE ’ ‘
If EVEQ.EFRONT".TIME > FNODE".TIME THEN
BREGIN (XINSERT AT FRONTX)
FNODE~,.LINK (= EVEQ.EFRONT?#
EVER.EFRONT $¢= PNODEj
END
ELSE
BEGIN (XINSERT IN MILDLEX) -
F = EVEQ.EFRONTj
Q = EVEQ.EFRONTj

WHILE (F~.LINK <> NIL) AND (F=Q) DO
BEGIN (XTRAVERSEX)
F 3= P~LLINKG
IF P~.TIME » PNODE™.TIME THEN,
BEGIN (XATTACHX)
Q~.LINK 3= PNODEj
PNODE™,LINK $= Pj
END- (XATTACHX)
ELSE
IF (P~.TIME = PNODE".TIME) THEN
BEGIN
R $= P~ LINK}
P~.LINK 1= PNODEj
PNODE™.LINK = Rj
END
ELSE
Q i= Fj
END; (XTRAVERSEX)
IF (P".LINK = NIL) AND (P",TIME <= PNODE".TIME) THEN
BEGIN (XATTACH AT ENDX) .
P~.LINK %= PNODE}
EVEQ.EBACK i= PNODE}
PNODE™,LINK = NILj
END;
END# (KINSERT IN MIDDLEX)
END_ (% PNODE <> NIL %)
ELSE
BEGIN (XPNODE = NILX)
FNODE $= EVEN; '
IF EVEQ.EFRONT = NIL THEN
BEGIN
EVEQ.EFRONT $= PNODE;
EVEQ.EBACK 3= FNODE;
END :
ELSE .
IF EVER.EFRONT",TIME > PNODE™.TIME THEN
BEGIN (XINSERT AT FRONTX)
PNODE",LINK 1= EVEQ.EFRONT;
EVER.EFRONT = PNODE}
END
ELSE
BEGIN (XINSERT IN MIDDLEX)
P i= EVER.EFRONT;
@ = EVEQ,EFRONT; :
WHILE (P~,LINK<>NIL) AND (F=Q) DO
BEGIN (XTRAVERSEX)
P t= P~ LINK;
IF P".TIME > PNODE™.TIME THEN
BEGIN (KATTACHX)

Q".LINK . .3= PNODE;
FNODE™.LINK = Fj}
END (XATTACHX)
ELSE
IF (P".TIME = PNODE™,TIME) THEN
BEGIN

R $= PT.LINKj
P~.LINK != PNODEj
PNODE™".LINK $= Rj}
END
‘ELSE
Qi= Pj
END§# (XTRAVERSEX)
IF (P~.LINK = NIL) AND (P~.TIME <= PNODE".TIME) THEN

REGIN (XATTACH AT ENDX)
P".LINK != PNODEj
ENDj
END$ (KINSERT IN MIDDLEX)
END§ (XPNODE = NILX)
EVEQR.ECOUNT $= EVEQR.ECOUNT+13 (XUPDATE NUMBER OF EVENTS IN EVENTQUEUEX)

END}# ' (XINSERTEVENTQUEUEX)

{ GETNEXTEVENT?
. THIS PROCEDURE GET THE NEXT EVENT FROM EVENTQUEUE, REMOVING IT FROM THE

FRONT OF EVENTQUEUE.

INPUT PARAMETERS: @
CALENDAR : FOINTER TO THE LIST OF 1 OR MORE EVENTS.

OUTFUT PARAMETERS
CALENDAR ¢ HAS HAD IT IS FIRST EVENT REMOVED.
EVTIME ! RETURNS THE TIME THIS EVENT IS TO TAKE PLACE.
ACTIONTYPE: RETURNS THE TYPE OF THE EVENT.
NUMBER ¢ RETURNS NUMBER OF NODE TYFE.
PPACK ¢ RETURN A POINTER TO THE PACKET INVOLVED.

..

PROCEDURE GETNEXTEVENT (VAR CALENDARIEVENTPTR$FVAR EVTIMEIREALFVAR ACTIONTYPEIACTS
VAR NUMBER:INTEGER7VAR PPACKIPTR)#
VAR
ECOUNT ¢ INTEGER# (¥ COUNTER EVENTS IN EVENTQUEUE X)
DELETED ¢ BOOLEANS

BEGIN -
DELETED = FALSE}
WITH EVER.EFRONT -~ DO
BEGIN (X% REﬂOUE FIRST EVENT IN EVENTQUEUE x)

EVTIME = TIMEj

ACTIONTYPE (= ACTION;

NUMBER ${= PARM3}

PPACK = PACKS
END# (%0OF WITHX)
(X NOW ADJUST THE LINKS AND DISCARD THAT NODE Xx)
EVEQ.EFRONT (= EVEQ.EFRONT™.LINK}
DELETED ¢= TRUESF
CALENDAR $= EVEQ.EFRONT}
EVEQR.ECOUNT = EVEQ.ECOUNT-17 (XUPDATE NUMBER OF EVENTS IN EVENTQUEUEX)
END# (XGET NEXT EVENTX)

{ LISTEVENTQUEUE?
THIS PROCEDURE LIST ALL OF THE EVENTS IN EVENTQUEUE.

INFUT PARAMETERS ¢

EV ! POINTER TO THE FIRST EVENT IN EVENTQUEUE.
OUTPUT PARAMETERS $:
TIME { SCHEDULE TIME OF EVENT IN EVENTQUEUE.
NODED ! ACTION TYPE OF EVENT.
NODES ! TYPE OF NODE IN THE SYSTEM.
PARM ! SPECIFY NUMBER OF NODE. >
PROCEDURE LISTEVENTQUEUES
VAR
" EV ¢ EVENTPTR# (XTEMPORARY USED FOR LIST ALL OF EVENTS IN EVENTQUELEX)
BEGIN
/ WRITELN#
WRITELNC’LIST OF THE EVENT IN EVENTRUEUE’3S6)7
WRITELN (/=== e e e 1156) 4
WRITELN}
HEADING$

WRITELN? WRITELNj i
WRITE(/SCHEDULE TIME IN EVENTOUEUE’ (35, ACTIONTYFE’:18s NODETYPE‘I17)3
WRITELNC('NO.":8)7

- 67 -

‘3189 ‘317

P
7]
4}
-
~

WRITEC/ !
WRITELN(=—="18)3§

WRITELNF

HEADING§

WRITELN? WRITELN/

EV $= EVEQ.EFRONT# (% SET POINTER TO THE FIRST EVENT IN EVENTQUEUE Xx)

WHILE EV «> NIL DO

BEGIN .
IF (EV~.ACTION = CREATE) THEN
BEGIN
NODES $= ‘ORIGINATOR’j
NODED $= ‘CREATED ‘;
END?
IF (EV~.ACTION = LEAVE) THEN
BEGIN
NODES $= ‘DELAY =~ ‘3
NODED = ‘LEAVED]
| END} _ ,
| IF EV~.ACTION = STOP THEN
| BEGIN
NODES $= ‘STOP... ‘4
NODED t= ‘STOP... ‘}
ENDj

|
|
| WRITE(EVT.TIMES22:3)4
‘ WRITELN(NODED:32,NODESS17EV”".PARMLS) §
UNDERL INEj

- . WRITELNj
‘ EV = EV~,LINK; (% ADJUST FOINTER TO THE NEXT EVENT X)
‘ . END
| WRITELN# WRITELNj}

HEADING$
, WRITELN/ WRITELN? :
‘) WRITELN(’EVENTS IN EVENTQUEUE =',EVEQ.ECOUNTI3)}

WRITELN}

END# (XLISTEVENTQUEUEX)

{ RANDOM?

THIS FUNCTION GET A RANDOM NUMBER CREAL NUMBERS] IN THE SPECIFIED RANGE
FROM A UNIFORM DISTRIBUTION. THIS IS A SYSTEM DEPENDENT ROUTINE.

INPUT PARAMETERS @
LauW ¢ LOWER BOUND OF RANGE.
HIGH ! UPPER BOUND OF RANGE.

OUTRFUT FARAMETERS !
THE FUNCTION RETURNS A NUMBER ON THE OFEN INTERVAL CLOWsHIGH1. 2

FUNCTION RANDOM(LOWsHIGHIREAL) !REAL} |

FUNCTION RAN(VAR SEED ${ INTEGER) ! REAL;j
BEGIN :
RAN $= SEED/65535;

SEED != (25173%SEED+13849) MOD 4335364
ENDi (KRANX)

BEGIN (XRANDOMX)
. RANDIOM $= RAN(RANSEED)X(HIGH-LOW)+LOWS
ENDF (XFUNCTION RANDOMX)

{ CREATES?
THIS PROCEDURE COMPUTES THE CREATION TIME OF NEXT PACKET, THIS TIME
BASED ON DATA OF ORIGINATOR NODE CMINWAIT,»MAXWAITI,
INFUT FARAMETERS @ . .
ORINO ¢ NUMBER OF ORIGINATOR NODE.
QUTPUT PARAMETERS @

- 68 -

TIMES ! SET THE NEXT CREATION TIME IN CREATE PACKET SESSION. T

PROCEDURE CREATES(ORINO:INTEGERFVAR TIMESIREAL)#

BEGIN '
TIMES := RANDOM(ORICORINOJI.MINWAIT,ORICORINOI.MAXWAIT)I+TTS
ORICORINOJLCURTIME = TIMES) '
(X ADJUST THE CURRENT TIME FOR ORIGINATOR NODE Xx)

END§ (XCREATESX) -~

{ ARRIVES:
THIS PROCEDURE COMPUTES WAITING TIME OF FACKET FROM DELAY NODE TO OTHER
DELAY OR DESTROYER NODEs BRASED ON DATA OF DELAY NODE CHOLDMIN»yHOLDMAXI.
INPUT PARAMETERS & :
DELNOGS ¢ NUMBER OF DELAY NODE.
OUTPUT PARAMETERS
TIMES ¢ SET THE SERVICE TIME IN DELAY NODE. 2

FROCEDURE ARRIUES(DELNOS:INTEGERiUAR TIMESIREAL) #
BEGIN

TIMES !{= RANDOM(DELCDELNOS].HOLDMIN,DELCDELNOSI,HOLDMAX) ¥
END# (XARRIVESX)

{ EXITPATH?
THIS PROCEDURE DETERMINE EXIT OF DELAY NODE IN ORDER TO SEND THE FACKET

TO OTHER DELAY NODE OR DESTROYER NODEs BASED ON DATA OF DELAY NODE

. CEXITS,EXFROBI.
INPUT FARAMETERS
NOS ¢ NUMBER OF DELAY NODE.
QUTPUT PARAMETERS @
EXNO © 3 NUMBER OF EXITS OF THIS DELAY NGDE. 2
PROCEDURE EXITPATH(NOSS INTEGER;VAR EXNO?!INTEGER)
VAR
R ¢ REALF (X A PSEUDORANDOM NUMBER X)
INDEX ¢ INTEGER# (% COUNTER FOR NUMBER OF EXITFATH X)
FLAGS ¢ BOOLEAN; (% BOOLEAN TO COMPLETE THE EXECUTION X)
BEGIN :

FLAGS := TRUE;
$= RANDOM(0.0s1.0)%
FOR INDEX $= 1 TO NOEXITS DO
BEGIN
IF FLAGS = TRUE THEN
BEGIN -
R $= R - DELCNOS3I.EXPROBLINLEXI}
IF R <= 0 THEN
BEGIN
¢ EXNO $= DELLNOSI.EXITSLINDEX13
FLAGS $= FALSEj}
END
ELSE
BEGIN
FLAGS := TRUE;
END3
END;
END}
END; (XEXITRFATHX)

{ INSERT?
THIS FROCEDURE INSERT A PACKET INTO QUEUE OF DELAY NODE WHEN THE FACKET
ARRIVED DELAY NODE,
INFUT PARAMETERS @
DEL.Q ! FOINTS TO A QUEUE OF 0 OR MORE PACKETS.
NPTR PR

OINTS TO PACKET BEING FLACED IN QUEUE.

- 69 -

OUTFUT PARAMETERS ¢

REL.Q. ! HAS HAD THE PACKET PUT AT THE END OF GUEUE.
NPTR ¢ THE NEXT FIELD IN QUEUE IS SET TO NIL.)
PROCEDURE INSERT(VAR LEL!DELAYF NPTRIPTR)}
BEGIN
IF DEL.Q.FRONT = NIL THEN (X QUEUE IS EMRTY X}
BEGIN : ‘
DEL.Q.FRONT (= NPTR}
DEL.Q.BACK {= NPTR}
NPTR™.NEXT = NILj
END (% OF START QUEUE X)
EL.SE

BEGIN (% QUEUE NOT EMPTY X)
DEL.Q.BACK™.NEXT _$= NPTRj
NPTR™ . NEXT $= NIL3
DEL.Q.BACK = NPTR}
END§ (% OF ADD TO NONEMPTY QUEUE Xx)
DEL.Q.COUNT $= DEL.Q.COUNT+13
END; (¥PROCEDURE INSERT IN QUEUEX)

{ DELETE!?
THIS PROCEDURE DELETE THE FIRST FACKET,NPTR» FROM QUEUE
INPUT PARAMETERS ¢
DEL .Q ¢ POINTS TO A QUEUE OF 1 OR MORE PACKETS
OUTPUT PARAMETERS @
NPTR t POINTS TO THE FIRST FACKET IN QUEUE
DEL.Q ¢ HAS HAD ITS FIRST PACKET REMOVED)

PROCEDURE DELETE(VAR NPTRI!PTRF;VAR DELIDELAY)#
BEGIN .
gF gﬁL.Q.FRDNT <¥ NIL THEN (x THERE IS AT LEAST ONE PACKET IN THE QUEUE X)
EG
NPTR ¢= DEL.Q.FRONT}
IF NPTR™.NEXT > NIL THEN '
| DEL.Q.FRONT $= NPTR™.NEXT (¥ REMOVE FROM LIST X)
ELSE
BEGIN (X THE QUEUE HAD ONLY ONE PACKET AND IS NOW EMPTY X)
DEL.Q.FRONT = NILj
DEL.Q.BACK = NILj
END3#
DEL.Q.COUNT $¢= DEL.Q.COUNT - 17
END# (X% OF QUEUE WAS NOT EMPTY X)
END# (XPROCEDURE DELETE FROM QUEUEX)

{ ARRIVEDELAYNODE:
THIS PROCEDURE SEND THE PACKET TO DELAY NODE» INSERT THAT PACKET IN
) DELAY QUEUE,COMPUTE LEAVING TIME FOR PACKET IN CASE DELAY QUEUE IS
EMPTY OR NOT EMFTYsALSO CHANGED THE STATE OF EVENT FROM CREATE T0O
LEAVE EVENT OR FROM LEAVE EVENT TO ANOTHER LEAVE EVENT,» THEN INSERT
INTO THE EVENTQUEUE
INPUT PARAMETERS ¢

DELNO ! NUMBER OF DELAY NODE
NFTR ! POINTS TO THE FACKET THAT JUST EMANATED TO DELAY NODE
DEL ¢! POINTER TO SPECIFY DELAY NODE NUMBER
OUTPUT PARAMETERS ¢
’ TEMP1 ! LEAVING TIME FROM DELAY MNODE»IN CASE QUEUE EMPTY
TEMP2 ! LEAVING TIME FROM DELAY NODE,IN CASE QUEUE NOT EMPTY 2>

PROCEHURE ARRIVEDELAYNODE (VAR DELNO:INTEGER}VAR NPTRIFTRiVAR DELIDELAF
VAR TEMP1I!REALFVAR TEMP2IREAL)

VAR
T ¢ REAL# (X FPSEUDORANDOM NUMEBER Xx) -

- 70 =

BEGIN

INPUT

BEGIN

END} (X

INPUT

NELCDELNDD.COUNT $= DELCDELNDI.COUNT+1$ (XCOUNT PACKET IN DELAY NODEX)
IF DELCDELNOJ.Q.FRONT = NIL THEN
BEGIN (XIF DELAY QUEUE EMFTYX)
INSERT(DELCDELNOIYNFTR) § .
ARRIVES(DELNQO»T)$# (X COMPUTE SERVICE TIME ¥)
TEMF1 $= T+TTi (% LEAVING TIME FOR PACKET X)
DELCDELNOI.LAST (= TEMF1j
NPTR™.WAIT = NPTR™.WAITH+TEMP1-TT-Tj
NPTR™,MARKS (= NFTR™.MARKS+TEMF1-TT/
DELCDELNOJL WAITED $= DELCDELNO].WAITED+TEMF1-TT#
DELCDELNOJ WAIT $= DELLDELNOJ .WAITH+TEMF1-TT-Ti
DELCDELNOJ. MARK $= DELCDELNO1.MARK+TEMF1-TT$
(X SCHEDULE THE LEAVE EVENT AT TIME TEMF1 INTO EVENTQUEUE X)
INSERTEVENTQUEUE (DELEDELNOSI . CALENDAR » TEMF 1 s LEAVE y DELNG» NPTR) §
-END
ELSE
BEGIN (XIF DELAY QUEUE NOT EMPTYX)
ARRIVES(DELNO»T)$ (% COMPUTE SERVICE TIME X)
(X SET LEAVING TIME FOR THAT PACKET FROM DELAY NODE Xx)
TEMP2 = DELLCDELNOJ.LAST+TS
DELCDELNOJLLAST = TEMP2}
NPTR™ .MARKS $= NPTR™.MARKS+TEMF2-TT}
NPTR™.WAIT $= NPTR™.WAITH+TEMP2-TT-T$
DELEDELNOJ.WAITED $= DELLDELNO].WAITED+TEMP2-TTS
DELCDELNQO].WAIT t= DELCDELNO1.WAIT+TEMF2-TT-T/
NPTR™.NEX = TEMP2j
INSERT(DELLDELNOJ»NPTR) §
(X UPDATE. TOTAL TIME THAT WAIT IN DELAY NODE X)
DELCDELNO].MARK = DELLDELNO].MARK+TEMP2-TT}
(¥ SCHEDULE LEAVE EVENT AT TIME TEMP2 INTO EVENTQUEUE X)
e INSERTEVENTQRUEUE (DELCDELNO1, CALENDARy TEMP2 s LEAVE s DELNOsNPTR) §
ND3

END; (XOF ARRIVE DELAY NODEX)

{ ARRIVEDESTROYNODE?

THIS PROCEDURE SEND THE FACKET 7O DESTROYER NODE, COMFUTE THE TRANSIT
TégE FOR THAT PACKET AND UPDATE THE TOTAL TRANSIT TIME IN DESTROYER
NODE

PARAMETERS @

DESNO ${ NUMBER OF DESTROYER NODE

NPTR ¢ POINTS TO THE PACKET THAT JUST EMANATED TO DESTROYER NODE
DES $ POINTER TO SPECIFY DESTROYER NODE -

OUTPUT PARAMETERS !

NPTR ¢ DELETE THIS PACKET FROM THE SYSTEM ¥

PROCEDURE ARRIVEDESTROYNODE (VAR DESNOSINTEGERiVAR NPTRIPTRFVAR DESIDEST)S

DESCDESNO].COUNT $= DESLDESNO1.COUNT+134

DESCDESNDO].TRANSIT t= TT-MNPTR”™ .BORN}

DESCDESNO].TOTALTIME $= DESCDESNOJ.TOVALTIME+DESCDESND].TRANSIT?
x)

OF ARRIVE DESTROY NODE

{ CREATEFACKET?

THIS FROCEDURE HANDLE A PACKET THAT JUST CREATEDsSCHEDULE NEXT CREATE
TIME IN EVENTQUEUE AND THEN SEND THAT PACKET TO DELAY NODE OR DESTROYER
NODE. THIS PROCEDURE AUTOMATICALLY CREATE NEW FACKET AT ORIGINATOR NORE
AFTER THE FORMER FACKET IS EMANATED TO DELAY NODE

FARAMETERS 3
NN

ORI

SPECIFIED NUMBER OF ORIGINATOR NODE
POINTER TO THE SPECIFY ORIGINATOR NODE

DEL t POINTER TO THE SFECIFY DELAY NODE
OUTFUT PARAMETERS ¢

¢

DELNO ¢ SPECIFIED NUMBER OF EXIT FROM ORIGINATOR NODE

TIMSO ¢ NEXT CREATE PACKET TIME FOR ORIGINATOR NODE

TIMS1 ¢t LEAVING TIME OF THE PACKET FROM DELAY NODE IN CASE DELAY
QUEUE IS EMFTY

TIMS2 : LEAVING TIME OF THE PACKET FROM DELAY NODE IN CASE DELAY

QUEUE IS NOT EMPTY X

FROCENURE CREATEPACKET (VAR ORIIORIGFVAR NN:INTEGERSVAR TIMSOSREAL}
VAR DELNQ?!INTEGER;VAR TIMS1:!REALFVAR DELIDELAS

VAR DES:DESTiVAR TIMS2IREAL)/

VAR

T ¢! REAL} (% A PSEUDORANDOM NUMBER X)

T1,T2! REALF (% LEAVING TIME FROM DELAY NODE X)

00 ¢ INTEGER# (% TEMORARY NUMEER OF ORIGINATOR NODE %)
REGIN

ORILCNN1.COUNT $= ORICNNI.COUNT+13 (%X COUNT NUMBER OF PACKET CREATED X)
CREATES(NN»T)3 (% COMPUTE NEXT CREATION TIME X) .

00 3= NN/

TIMSO (= T3

(% SCHEDULE NEXT CREATION TIME IN TIMSO MIN. INTO EVENTQUEUE X)
INSgRTEUENTGUEUE(ORI[OU]oCALENHARvTIMSOrCREATEyOUyNIL)5

(X NOW CREATE THAT NEW PACKET AND SET INITIAL PARAMETERS %)

NEW(NPTR) #
WITH NPTR™ DO
BEGIN
BORN &= TT#
ORG ¢= 00F
MARKS != 0.03
WAIT = 0.0
NEX = 0.0
PACNO !{= ORICOO1.COUNT#
ENDj

DELND ¢= ORICOO1.EXIT; (% NUMBER EXIT FROM ORIGINATOR NODE X

(X CONSIDER SIGN OF NUMBER EXIT» IF POSITIVE NO. MEAN DELAY NODE ELSE
MEAN DESTROYER NODE X)

IF DELNO » O THEN

BEGIN (% PACKET IS SENT TO DELAY NODE X)
ARRIVEDELAYNODE(DELNOsNFTRsDELS,T1,T2) 5§
TIMS1 = T14
TIMS2 = T2j

END

ELSE :

BEGIN (X% PACKET IS SENT TO DESTROYER NOLE *)
ARRIVEDESTROYNODE (DELNOsNPTRsDESS) ¥

END3$

END# (XCREATEPACKETX)

{ LEAVEDELAY!:
THIS FROCEDURE TRANSFERS FPACKET FROM ONE DELAY NODE TO ANOQTHER DELAY OR
IESTROYER NODE RY COMPUTE THE EXITFATH.

INFUT PARAMETERS ¢

DELNUM ¢ NUMBER OF DELAY NODE
NPTR ¢t FOINTS TO THE PACKET THAT IS REMOVED
DEL $ POINTER TO SPECIFIC DELAY NODE
DES ! POINTER TO SPECIFIC ULESTROYER NODE
OQUTPUT FARAMETERS @
EXNOS { SPECIFIED NUMBER OF EXITS OF DELAY NODE
TEMB ! TIME LEAVING FROM DELAY NODErIN CASE QUEUE EMFTY
TEME1 $ TIME LEAVING FROM DELAY NODE»IN CASE QUEUE NOT EMPTY X

FROCEDURE LEAVELELAY (VAR NPTR{FTRFVAR DELNUM!INTEGERiVAR DEL:HELA;UAﬁ DESIDEST
) VAR EXNOSINTEGER#VAR TEMBIREAL?VAR TEMB1IREAL)S
VA

-T2 =

TEMyTEMS ! REAL’ (X LEAVING TIME FROM DELAY NODE X)
BéGIN MM ¢ INTEGER# (% TEMPORARY NUMBER OF EXIT X).
EXITPATH(DELNUMyMM)$ (% COMPUTE EXIT FROM DELAY NODE x)
EXNOS $= MM# (% NUMBER OF EXIT AFTER COMPUTE EXITFATH X)
(X NOW REMOVE PACKET FROM QUEUE OF DELAY NODE X%)
DELETE(NPTR,DELLDELNUMI) j
(x. CONSIDER SIGN OF EXITr POSITIVE NO.MEAN DELAY NODE ELSE MEAN
DESTROYER NODE X)
IF EXNOS > O THEN
BEGIN (XSENT PACKET TO- DELAY NODEX)
ARRIVEDELAYNODE (EXNOSyNFTRsDELSs TEM, TEMS) §
TEMB {= TEM$ (% LEAVING TIME FROM DELAY NODE,» QUEUE EMPTY X) .
ENDTEHBI:= TEMSs (% LEAVING TIME FROM DELAY NODE, QUEUE NOT EMFTY X)
ELSE
. BEGIN (¥SENT PACKET TO DESTROYER NODEX)
: ARRIVEDESTROYNODE (EXNOS,NPTRyDESS) #
ENDj}
END{} (XLEAVEDELAYX)

{ STAFSIM?

THIS PROCEDURE HANDLE EVENT THAT CURRENT TIME > MAXIMUM TIME FOR RUN
THIS PROGRAM BY HALTING THE PROGRAM

INPUT PARAMETERS @
NONE

OUTFPUT PARAMETERS ¢
NONE ’
THE PROGRAM WILL BE HALTED X

PROCEDURE STOPSIM3?

BEGIN
WRITELN? WRITELN} WRITELNj

WRITE(’ Ty
UNDERLINE
WRITELN/
WRITE ¢/ REKRRKKKKKKRKAKRKKAMKK KKK KKK KK KKKKKIKKKKAKKAKKKKKRKRKKRKKKKRK 7) §
HEADING/
WRITELN? WRITELN{ WRITELNj
WRITELN(’CURTIME IS GREATER THAN MAXTIME’ $135)#
WRITELNS#
WRITELN(’WE WILL STOP THE SYSTEM SIMULATION AT THIS TIME:1463)}+
WRITELNS .
WRITELN(’THESE ARE THE EVENTS THAT PENDING IN EVENTQUEUE’:43)i
WRITELN} WRITELN;S
HEADING§ .
WRITELN?
UNDERL INE$
WRITELNF WRITELNS WRITELNj
ENDi (XSTOPSIMX)

{ INITIALORI? .

THIS PROCEDURE INITIALIZE THE STATE OF ORIGINATOR NODE AND ZERO OUT
STATISTICS

INFUT PARAMETERS 3
NONE

OUTPUT PARAMETERS . :
ORI ¢ AlLL FIELDS ARE INITIALIZED OR SET TO ZERO EXCEFT EXIT.»

MINWAITyMAXWAIT WHICH HAVE BEEN READ FROM INPUT DATA FILE

PROCEDURE INITIALORI(VAR ORI:ORIGINATOR)#

BEGIN .
WITH ORI DO

- 73 -

"BEGIN

WITH DEL DO

BEGIN
Q.FRONT $= NILj
@.BACK $= NILj -
Q.COUNT $= 0i
COUNT t= 05
MARK t= 0,04
AVER t= 0,04
WAITED $= 0.0}
WAIT t= 0.0
LAST t= 0,04

BEGIN
CURTIME $= 0.0}
COUNT &= 0j
INSERTEVENTQUEUE (CALENDAR y STARTTIME y CREATE »NOyNIL) §
END7 (XOF WITH ORIX)
END§ (XINITIALORIX)

€ INITIALDEL:
THIS PROCEDURE INITIALIZE THE STATE OF DELAY NODE AND ZERO OUT

STATISTICS
INFUT PARAMETERS 3
NONE

OUTPUT PARAMETERS 3
. DEL ¢ ALL FIELDS ARE INITIALIZED OR SET TO ZERO EXCEPT EXITS»
EXPROByHOLDMINyHOLDMAX s AND MAX WHICH HAVE BEEN READ FROM

INPUT DATA FILE 3

PROCEDURE INITIALDEL (VAR DELIDELAY)?

END; (%OF WITH DELX)
END§ (XINITIALDELX)

{ INITIALDES?
THIS PROCEDURE INITIALIZE THE STATE OF DESTROYER NODE AND ZERG OUT

STATISTICS
INFUT PARAMETERS ¢

NONE
QUTFUT FARAMETERS ¢

DES ¢ ALL FIELDS ARE SET TO ZERO X
FROCEDURE INITIALDES(VAR DES:DESTROYER)§
BEGIN
WITH DES DO
BEGIN
TRANSIT i= 0.0
TOTALTIME 3= 0.07
COUNT 1= 0

END’ (XOF WITH DESX)
END3 (XINITIALDESX)

{ REFORTHEADING? .
THIS PROCEDURE CONSTRUCT FORMAT HEADING FOR REPORTED ACTION OF EVENT
WHEN GET AND PERFORMED ACTION OF EVENT FROM EVENTQUEUE

INPUT PARAMETERS @

NONE
QUTPUT FARAMETERS ¢

NONE .
THE FORMAT HEADING WILL BE WRITTEN IF THE CONDITION TEST IS ACCEPTED

BEGIN

|
PROCELURE REPORTHEADRING#
WRITELN? WRITELN; WRITELN/ WRITELN? WRITELN# WRITELN; WRITELNi

- 74 -

WRITELN? WRITELN} WRITELN/ WRITELN# WRITELN’? WRITELN#

WRITE ¢ RRKKKKKKKKKKKKEKKKRKEKERRKARKRRKAAKKKKKRKKKKKKKKKKKRKK’) §
"HEADING#

WRITELN? WRITELNj

WRITELN(’THIS IS A FORMAT HEADING FOR REPORT ACTION OF EUENTS"
WRITELN(’
WRITELN?
WRITELN(‘IN CASE OF ACTION = CREATE ¢ L O =>» DS 17)}

WRITELN/

WRITE (2 RAKERKKRAKKKKKKKKKKK KKK RAAKRKK K KRR K KKK KK KKKKKLRKKKKK) §
HEADING # :

WRITELN?

WRITEC('TIME'$4y‘PAC.#’ 311y ‘PAC, TIME/$13:/EVENT’ 10y 'NEXT CREATE’!18)7
WRITELN(’TIME LEAVIN 140) 3

WRITELNS :

WRITELNC‘IN SYSTEM’$30, DESCRIPTOR’:113)7

WRITE(’ *****************#***#*#**#X**X*********#*#*********)
HEADING

WRITELNS#

WRITE(’ ‘)i
UNDERLINE#

WRITELN? WRITELN}

WRITELNC’IN CASE OF ACTION = CREATE ¢ L O => DQ 1)}

WRITELNS

WRITE(' **#*X*******************X*##***K***#*************#** i
HEADING

WRITELNG

WRITE(/TIME 36y ‘PAC. #3511y ’PAC, TIME’$13y/EVENT‘ 210y 'NEXT CREATE’!18)4
WRITELN('TIME LEAVING‘$40,'Q-SIZE’'110)+ '

WRITELNY :

WRITELN(‘IN SYSTEM’ ¢30s 'DESCRIPTOR’ 13, ' TONODE’!435) 4
URITE(’*****#****X***X*ﬂ*********xt#*#K******X***Xﬂ#*******)
HEADING ¢

WRITELN? .

WRITE(’ . ‘)i
UNDERLINES

WRITELN? WRITELNS/

WRITELN(’IN CASE OF ACTION = DRIGINATOR ==> DESTROYER $ L O => K 1/)+%
WRITELNS#

WRITE (7 RKMKRAKIKKAKKAAKKAAAR KK KKK KKK KKRKKKRKKKKKKKKKAKKKK) §
HEADINGS

WRITELN?

WRITE('TIME’ 6y 'PAC.#/311y/PAC., TIME’$13s EVENT’$10s'NEXT CREATE :18)7
WRITELNC'TOTAL$82y 'TRANSIT 311)3

WRITELN?

WRITELN(‘IN SYSTEM‘$30y‘DESCRIPTOR’ {13y ‘KILLED' 378y ' TIME ' $9)7

WRITE ¢ 2 RRERRRIRARKKKKRKRAAORIKKK KR KKK KKK KKK KKK KKK KK AKKKAKRK) §
HEADING#

WRITELNS

WRITE(’ =)

UNDERL INE#

WRITELN# WRITELNS

WRITELN(’IN CASE UF ACTION = DELAY ==> DELAY ¢ L D => DS 17)}%
WRITELN?

WRITE €/ RRMAKA KK AR A AR KA KA KA KK KKK KK KKK KKK KKKKARKAKKKKKKRKAK) §
HEADING#

WRITELN#

WRITE('TIME’/ 34y ‘PAC. #3211y PAC, TIHE"137’EUENT"109’NEXT EV/$31)35
WRITELNC’Q-SIZE’$12y/TIME LEAVING' 150}

WRITELNG -

WRITELN(’IN SYSTE .30-’DESCRIPTDR’.13:'FRUMNODE':29;’FRDHNDDE':12)?
Ng!g?(é*##******#***#******##******#***********X*****##*X**')5
HEADING?

?2)3
192)

WRITELN
WRITE(C” —-—=);
UNDERLINES
WRITELN’} WRITELN}
WRITELN(’IN CASE OF ACTION = DELAY ==> DELAY ¢! € D => D@ 1')#
WRITELNS
WRITE (2 RRKKKKKKKAKAKRRKKK KKK KKKAKA KKK RKKAKKKKKARKKKKK KK KKK) §
HEADINGS$
WRITELN;}
WRITEC'TIME’ t&s ‘PAC.3’ 311y 'FPAC. TIME’$13y’/EVENT’$10s 'NEXT EV‘$131)5
WRITELN{’Q~SIZE’ 12, 'TIME LEAVING’!1S,’Q~SIZE’$10)3}
WRITELNS}
WRITE(’IN SYSTEM’$30y /DESCRIPTOR’$13y FROMNODE’ $29y ' FROMNODE $12)5
WRITELN(’TONODE’ :24)%
WRITE ¢ 2 RRRKAKKKKIK KK KKKK KKK RKKKAK KR AKKRAKAK KKK KARKKKKKKK KKK) 5
HEADING?
WRITELNS$
WRITE(’ Y
UNDERLINE}
WRITELNS WRITELNS
WRITELN(’IN CASE OF ACTION = DELAY ==> DESTROYER ¢ L D => K 1’V ’
WRITELN?
WRITE € 7 KARRAAKKAR KRR KKK KA AR KKAKKA KA KKK KKK KK ERAKKKAKKK KKK’) §
HEADING#
WRITELNS
WRITEC'TIME’ 69 ‘PAC.#’:11¢’PAC. TIME‘$13,/EVENT’ 10y 'NEXT EV‘/ 13105
WRITELNC’Q-SIZE’ 12y’ TOTAL’$37y ' TRANSIT/ $11) 4 .
WRITELN#
WRITEC’IN SYSTEM’$30s 'DESCRIFTOR’$13y’FROMNODE 329+ 'FROMNODE’ $12) 4
WRITELNC'KILLED’ :137y'TIME' 1904
WRITE ¢ 2 kKKK KKAKARAOK K I HK KKK KKK K KRR KKK KKK KKK KKK KAKAKKKK ?) §
HEADINGS .
WRITELN} *
WRITE(” ——— ‘Y3
UNDERLINE}
« WRITELNS
END§ (XREFORT HEADINGX)

{ REPORT:
- THIS FROCEDURE REFORTED AFTER PERFORMED THE ACTION OF THE EVENT. IT
WILL BE REPORTED EVERY TIMES WHEN THE EVENT IS GET FROM EVENTQUEUE IF
THE CONDITION TEST IS ACCEPTED. THIS REPORT WILL FRINT INFORMATION AS
FOLLOW: -
- CURRENT TIMELCLOCK] OF EVENT
- NUMBER OF PACKET AND ORIGINATOR NODE THAT CREATED
- TIME THAT PACKET BORN
~ EVENT DESCRIFTOR
- NEXT CREATION TIME
- NEXT LEAVING TIME FROM NODE
- Q-8IZE FROM DELAY NODE
- LEAVING TIME FROM NODE
- Q-8IZE TO NODE
- TOTAL PACKET DESTROYED !
- TRANSIT TIME FOR EACH FACKET

INFUT PARAMETERS ¢ :
A ACTIONTYPE QF EVENT

*
1T ¢ TIME OF OCCURENCE EVENT
NO3 ¢ NUMBER OF EXIT FROM ORIGINATOR NODE
NO2 ¢! NUMBER OF EXIT FROM DELAY NODE
FARM ¢ SPECIFY NUMBER OF NODE IN THE SYSTEM
DELS ¢ SFECIFY DELAY NODE NUMBER FROM ARRAY OF LDELAY NODE RECORD
DESS ! SFECIFY DESTROYER NODE NUMBER FROM ARRAY OF DESTROYER NOLE

76 -

RECORD

OUTFUT PARAMETERS ¢
NONE
THE REPORT WILL BE WRITTEN AFTER GET AND PERFORMED ACTION FROM

EVENTQUEUE >

PROCEDURE REPORT(ASACT)
VAR . .
SIZE,SIZE1 : INTEBER$ (X Q-SIZE OF DELAY QUEUE %)
ANSyANSW ! CHARJ
BEGIN :
IF A = CREATE THEM
BEGIN (% ACTION TYPE = CREATE %)
IF NO3 > O THEN :
BEGIN
ANS $= ‘='j
SIZE1 $= DELSCNO33.Q.COUNT;
IF DELSCNO31.Q.COUNT = 1 THEN
BEGIN
WRITE(TTS7:3sNPTR™.ORG:77 s’ sNPTR™ ,PACNO¢ 2, NPTR™ . BORN:12:3) 5
WRITELN(’D’ 16y NPTR™.ORGS2s /=>DS’ yNO322, TINI 1323, TEMA$3933)
END
ELSE
BEGIN
WRITE(TT$733,NPTR™.ORG37» ‘5’ yNPTR™ ,PACNO:2, NPTR™ . BORN$123) §
WRITE(’0‘:4»NPTR™.ORG:2y ‘=3DQ’ yNO3$2, TIMN 1333, TEME2:3913) 5
WRITELN(SIZE1:14)3
END#
END
ELSE
BEGIN _
WRITE(TT37:3,NPTR™.ORG37s* s’ yNPTR™ ,PACNO$2,NPTR™ ,BORN?12:3) §
WRITE(’D’$67NPTR™,ORGI2s ‘=> K’ ABS(ND3) :2,TIMI13:3) 5
WRITELN(DESSCND31,COUNT 42, DESSENO3]. TRANSIT13:3) 5
END}
END?
IF A = LEAVE THEN
BEGIN (X ACTION TYPE = LEAVE X)
IF NO2 > O THEN

BEGIN

IF DELSCNO21.Q.COUNT = 1 THEN

BEGIN
ANS = ‘E‘
ANSW &= ‘-’}
SIZE (= DELSCPARMI.Q.COUNT}#
SIZE1 $= 0f
IF DELSCPARMI.Q.COUNT = O THEN
BEGIN

WRITE(TT!Z7:3/NPTR™.ORGS7r ‘s’ sNPTR™ . PACNO:2sNPTR™,BORNI12:3) 5
WRITELN(’D’t6,PARMI2, ‘=08’ yNO2I2sANSI25ySIZE 13y TEM221423) 5
END .
ELSE
BEGIN -
WRITE(TTI7:3sNFTR™.ORGI7y ‘s’ yNPTR™.PACNO:2)NPTR™.BORNS12:3) 3
WRITE('D’$4,PARMS2y =308’ yNO2:2) §
E:RITELN(DELSEPARM].G.FRONT“.NEX:EB:B;SIZE:101TEH231433)i
Di
END
ELSE
BEGIN
ANS :
ANSW ¢
SIZE

‘ES

1ot

; .
DELSLPARMT.Q,COUNT

- 77 -

SIZE1 &= DELSCNO21.G.COUNT;
IF DELSCPARMI.R.COUNT = O THEN
BEGIN
WRITE(TT$733yNFTR™,ORGS 75 ‘s’ »sNFTR™ ,FACND 32y NPTR™.BORN31233) 5
WRITEC’D’ 6 PARMID, ‘=200’ sNO232) 5
WRITELN(ANS$25,SIZE$13, TEM3$1433,SIZEL$14)
" END
ELSE
BEGIN
" WRITE(TT733sNPTR™,ORG:7s s’ yNPTR™.FACNO!2,NFTR™ . BORN:12:3) 5
WRITE(‘D’ 3$&6yPARMI2, =200’ yNO232) 5
WRITE(DELSCPARMI.Q.FRONT",NEX:2833,SIZE$10) 5
WRITELN(TEM33$1433,SIZE1314) 3
END$
END;
END
ELSE
BEGIN
SIZE := DELSCFARMI.Q.COUNT?
ANS t= ‘E’j
IF SIZE = 0 THEN
BEGIN
WRITE(TT:7¢3,NPTR™,ORG:7» ‘s s NPTR™.PACNO32»NPTR™ . BORN$12:3)
WRITE(’D’&6yPARMS2y => K’,ABS(NO2)$2sANSI25) 4
WRITELN(SIZE$13,DESSCNO2].COUNT $37, DESSEND2]. TRANSITI1333)5
END
ELSE
BEGIN . -
WRITE(TT:733/NPTR™.ORG:7» s/ yNPTR™,PACNO 2, NPTR™ . BORN31233) 5
WRITE(’D’3$6yPARMI2s/=> K’ sABS(NO2)312)}
WRITE(DELSCPARMI.Q.FRONT™ ,NEXi2833) 5
WRITELN(SIZE:10,DESSCNO21,COUNT 37, DESSINO2]. TRANSIT1333) 4
’

END
END§
END#
IF A = STOP THEN
BEGIN
WRITELN?
UNDERLINE
WRITELNS
HEADING§
WRITELN#
WRITE(' X ‘i
WRITELM(’ XY :
WRITE(’ % X
WRITELNC(' x’
WRITE('X IT 18
WRITELN(’'PROGRAM X
WRITE('% : ‘i
WRITELNC(’ X°)3
- WRITE(% ‘)i
WRITELNC(” X)5
HEADING
WRITELN#
UNDERLINES
* WRITELN? WRITELNS
END§
END# (XREPORTX)

)i
A TIME FOR STOP SIMULATION)%
)i

.

{ FINALREFORT? .
THIS PROCEDURE PRODUCED THE FINISHED REPORT OF THE SIMULATION NETWORK
SYSTEM, THIS REPORT WILL PRINT ALL INFORMATION AS FOLLOW -
- TOTAL PACKETS CREATED BY EACH ORIGINATOR NODE

- 78 -

- TOTAL PACKETS CREATED BY ALL ORIGINATOR NODES
-~ TOTAL PACKET FLOW THROUGH EACH DELAY NODE

- TOTAL PACKETS IN DELAY NOIES

- AVERAGE DELAY TIME AT EACH NODE

- TOTAL DELAY TIME IN DELAY NODES

- AVERAGE DELAY TIME IN DELAY NODE

— TOTAL PACKET DESTROYED BY EACH DESTROYER NODE
.. AVERAGE TRANSIT TIME IN EACH DESTROYER NODE

- TOTAL PACKET DESTROYER BY ALL DESTROYER NODES
- TOTAL LIFETIME OF DESTROYER NODES

—~ AVERAGE TRANSIT TIME

INPUT PARAMETERS!

ORI { ARRAY OF ALL ORIGINATOR NODE RECORDS
DEL $ ARRAY OF ALL DELAY NODE RECORDS
DES ! ARRAY OF ALL DESTROYER NODE RECORDS

OUTPUT PARAMETERS:

NONE
THE RESULTS OF THIS PROGRAM WILL BE NRITTEN TO OUTPUT FILE X

FROCEDURE FINALREPORT(ORI:ORIG#DELIDELAFDESIDEST)

VAR

BEGIN

KeLsCsBsXrY ¢ INTEGER; (X INDEX FOR NODE TYFE X)

TOL ¢ INTEGERF (% TOTAL PACKETS CREATED BY ORIGINATOR NODES X)

TOT ¢ INTEGER$ (X TOTAL PACKET IN DELAY NODES Xx)

TOLS ¢ INTEGER# (%X TOTAL PACKET DESTROYED BY DESTROYER NODES X)

TOLT ¢ REAL (% TOTAL TRANSIT TIME FOR ALL PACKETS IN DESTROYER NODES X)

TOTA ¢ REAL# (% TOTAL DELAY TIME FOR ALL PACKETS IN DELAY NODES %)

AVG ¢ REAL$# (X AVERAGE DELAY TIME IN DELAY NODE X)

AVE ¢ REAL? (X AVERAGE TRANSIT TIME FOR ALL PACKETS IN EACH
DESTROYER NODE x)

AVES § REALSF (X AVERAGE TRANSIT TIME FOR PACKET X)

WAITING ¢ REALj

WRITELN?
WRITELN(OUTFILE)? WRITELN(OUTFILE)?
WRITELN(OUTFILEy 'RESULTS OF THE SIMULATION RUN FOR NETWORK SYSTEM’ié

_______ 7

2)
WRITELN(OUTFILE, / s=s=====zs=z=sss=sssss=sssssssssxss ==1142)
WRITELNCOUTFILE 1 7 RHRRR KRR AR KRR RRRCKORKRKRR * £ 62)
WRITELNCOUTFILE)s WRITELN(OUTFILE)S
WRITE (OUTFILE » / KRKRKRRKKKIKKKIKKIRIKIKIARAKKRIKARAR KR IRIKRAKKKKK KK *) 5
WRITELNCOUTFILE y / XXRKIRIKRKKKKRIKRIIKARK ¥) §
WRITELN(DUTFILE)# WRITELNC(OUTFILE);
WRITELNCOUTFILE,’ORIGINATOR NODE’:$30,‘TOTAL PACKET CREATED’:3S);
WRITELNCDUTFILE ' 1330, - $35)7
WRITELNCOUTFILE)$ WRITELN(OUTFILE)j
WRITE(DUTFILE s/ KARKKKAKRRKRKRIORRKKIARIAIARKIKRARRKRRIRAKKKKKKKK *) §
WRITELNCOUTFILE y / RRRRAKKORKRIOKIKKKKKKKR *) §
WRITELNCOUTFILE) WRITELN(OUTFILE)$
FOR L $= 1 TO ORIGS DO
BEGIN
WRITELNCOUTFILE,L$23,0RICLICOUNT33)
WRITECOUTFILE; ' - 2y
WRITELN(QUTFILE,’ --- -3
END'?
TOL $= 03 (x INITIAL VALUE FOR TOL *)
FOR C t= 1 TO ORIGS DO
BEGIN
TOL $= TOL+ORICCI.COUNT;
ENDj
WRITELNCOUTFILE)5 WRITELNCOUTFILE)S WRITELN(OUTFILE)j
WRITELN(OQUTFILE,‘TOTAL PACKETS CREATED BY ORIGINATOR NODES =‘,TOL310)3
WRITELNCOUTFILE)$ WRITELNCOUTFILE)$S WRITELNCOUTFILE)S$

- wr

- 79 -

WRITE(QUTFILE y # XRKRKKKKKKKKKKKKKRKKKRKAKAARAKKKKRKKK KK RKKRKKKKAKKKKK) §
WRITELN(QUTFILE y / RXKRKKKREKKKKKKAEAKKKKKK) §
WRITEC(OUTFILE » / KRKKKIRAKKKRKAKKRKKFK KKK KAKKKKKKK K KKK KKKRKKKIOKKKKKKRKK) §
WRITELNCOUTFILE s “RKAKRKKEKKKRKKKKKKKKKKKK) 7
WRITELN(OUTFILE)# WRITELN(QUTFILE)} WRITELN(OUTFILE)$ WRITELN(OUTFILE)j]
WRITE(OQUTFILE y 2 XKKKKKRKKKAKKKRKKKKAKHRKKKERKKKK KKK KK KKKAKKKKKKKKERKKK) 7
WRITELNCOUTFILE y “ RKKRKKKAKKKKKKRKKKKKRKKK 7)
WRITELN(OUTFILE)} WRITELN(OUTFILE)}
WRITE(OUTFILE, ‘DELAY NODE’3$12,/TOTAL PACKET IN DELAY NODE’$(29)F
WRITELNCOUTFILEY 'AVERAGE DELAY TIME AT NODE'3$29)%
WRITE(OUTFILEs ' ==—m———mm== 7312y’ 11295
WRITELN(OUTFILE, ' 129
WRITELNC(OUTFILE)$} WRITELN(OUTFILE)j
WRITECOUTFILE y @ RAKRKKKKKAKAKKKAKK KK A RAKAR KKK AAOKKKKIKKKKKKKKRAKRKKKKK) §
WRITELNCOUTFILE s “RAKKKKKKKKKKKKKKKRKKKEKKK) §
WRITELN(OUTFILE)$ URITELN(DUTFILE);
FOR X i= 1 TO DELAS DO
BEGIN

IF (DELLX1.COUNT <> 0) AND (DELLX1.MARK < 0) THEN

(DELLX1.MARK)/(DELLCX].COUNT)#
(DELCX1.WAIT)/(DELLX].COUNT) #

EGIN
DELLXJ.AVER
WAITING :

END

ELSE

BEGIN
DELCX1.AVER $= 0.0%

END}

WRITELNCOUTFILEsX$9»DELLCXI.COUNTS18,WAITINGS3133) 5

WRITE(OUTFILE,’ Y

WRITELN(OUTFILE,’ Y

END$

TOT $= 07 (X INITIAL VALUE FOR TOT %)

TOTA t= 0.05 (% INITIAL VALUE FOR TOTA %)

FOR Y $= 1 TO DELAS DO

BEGIN

TOT $= TOT+DELLYI.COUNTS
TOTA $= TOTA+DELLYI.WAITS

END}

WRITELN(OUTFILE)/ WRITELN(OUTFILE); WRITELN(OUTFILE)$

WRITELN(OUTFILEs’TOTAL PACKETS IN DELAY NODES =y TOT$10) 5

WRITELN(OUTFILE)$ WRITELN(OUTFILE);

WRITELN(OUTFILE, TOTAL DELAY TIME IN DELAY NODES =°»(OTA$10:3)}

WRITELN(OUTFILE);

IF TOT = O THEN

BEGIN

WRITELN(OUTFILE,’ 162)5
NRITELN(OUTFILEr’*X#*#X*#*t*x****#*X*******#X*#****x#*****x**#"6“)1
WRITELNCOUTFILE)$

WRITELN(OUTFILE,’CAN NOT FIND AVERAGE DELAY TIME IN DELAY NODE’:$42)j

WRITELNCQUTFILE) #
WRITELN(DUTFILE:'************X***X*X****#X**XX*****Xt*#*******’:62)§

[1]

WRITELNCQUTFILE, 1362)5%
AVG = 0.0}

END

ELSE

BEGIN
AUG = TOTA/TOTH

END}

WRITELN(QUTFILE) #

WRITELN(OUTFILE, 'AVERAGE DELAY TIME IN DELAY NODE =‘»AVUGI10:3)3
WRITELN(QUTFILE); WRITELNCOUTFILE)? WRITELN(QUTFILE)S$

WRITECQUTFILE » “RRRKKKKEKKKRKKAKKKKKKKKKKA KK KKK KKK KKKAKKRKAKAKKKKKKKKKK) 7
WRITELN(OUTFILE y “XRRKKKAORAKKKKKKKKKKKKKKK ‘) §

- 80 -

WRITECOUTFILE y * KRKKKKOKKKARKAAORIKKKAOKKKARRKAKK KKK KKK KK KK AOKKK AR KK KAORKK 7) §
WRITELNCOUTFILE s * KHKKKKKIKKKREKKKRKKKKKKKK’) §

WRITELNC(OUTFILE)$ WRITELN(OUTFILE)$ WRITELN(OUTFILE)$ WRITELNC(OQUTFILE)S
WRITECOUTFILE y * KKKKKKKKKKKKKAKRKAKKKKKKKRKKIORK KKK KK KKKKAAAKAKKKKKKK 7) §
WRITELNCOUTFILEy KEXRKAKRKKKKKKKKKRKKKKRAK’) §

WRITELN(OUTFILE)F WRITELN(QUTFILE)}#

WRITE(OUTFILE, 'DESTROY NODE‘:20y'TOTAL PACKRET DESTROYED’ $27)5
WRITELN(OUTFILEys ‘AVERAGE TIME’!17)5

WRITEC(QUTFILEy '~ 132097 ‘3270
WRITELNCOUTFILEy ' =mmm==————==’117)} :

WRITELNCOUTFILE)# WRITELN(OUTFILE)
NRITE(DUTFILEv’#******#*#********#*X*#**##X******##*****#******#***X)i
WRITELNCOUTFILE y “KXKAKRKKKKKARKRKRKKKKAKK ’) §

WRITELNC(OUTFILE)S WRITELN(OUTFILE)$

FOR K i= -1 DOWNTO DESTS DO

BEGIN
IF DESLKI.COUNT <> 0 THEN
BEGIN
AVE 3= DESCK1.TOTALTIME/DESLCK]1.COUNTS
END
ELSE
BEGIN
AVE (= 0,0+
END#
WRITELN(OQUTFILEyABS(K)$15sDESEKI.COUNTI22,AVEI2333) 4
WRITECQUTFILEy” - - -—’3
WRITELN(OQUTFILE," : ryi
END3$

TOLS $= 03 (x INITIAL VALUE FOR TOLS X)
TOLT $= 0.0% (X INITIAL VALUE FOR TOLT x)
FOR B = -1 DOWNTQ DESTS Do
BEGIN :
TOLS 3= TOLS+DESEB].COUNT$
TOLT ¢= TOLTH+DESCBI.TOTALTIMES#
END3$
WRITELN(OQUTFILE)? WRITELN(OUTFILE)F} WRITELN(OUTFILE)S#
WRITELN(QUTFILE,’TOTAL PACKET DESTRAYED BY DESTROYER NODES =‘,TOLSI10)+
WRITELN(OUTFILE)# WRITELN(OUTFILE)
WRITELN(OUTFILE»/TOTAL LIFETIME OF PACKETS =/yTOLT10:3)5
WRITELN(QUTFILE)
IF TOLS = 0 THEN
BEGIN
WRITELN(QUTFILE, - r382) %
WRITELN(OUTFILE s # KRAKKAKKKKAKKKKRKKKKKKKKRKE KKK KKAKAKK 162 §
WRITELNCOUTFILE)§
WRITELN(OUTFILEs’CAN NOT FIND THE AVERAGE TRANSIT TIME’152)7

WRITELN(OUTFILE);
URITELN(DUTFILE;’****#**#***#***#*#*******#*#*##******’ &2y

WRITELN(QUTFILEy’ - -= 162)5
AVES = 0.0
END
ELSE .
BEGIN
AVES != TOLT/TOLSj
ENLDG
WRITELN(QUTFILE) $
WRITELN(OUTFILEy ‘AVERAGE TRANSIT TIME =’yAVESI10:3) 3

WRITELN(OUTFILE)? WRITELN(OUTFILE)F WRITELN(OUTFILE)$#
WRITECOUTFILE s # %ok KKK K KORORK KRR K HOK AR KOK KA KK KK AR KK KKK AR KK KK RKOKAOK KKK KK 7) §
WRITELNC(OUTFILE y ‘ RkXkRKKKKKAKKKKRKKKKKAKKKK”) §
WRITEC(OUTFILE s KKRKKKIKKKKRKKRERERKKKRKAAKIIKRK KKK KAKRKKRIKKAOKKKKKK KK) §
WRITELNCOUTFILE y kXkikdokkXIKRKIKKIORKKKKKKK ‘) §

END# (XOF FINAL REPORTX) .

€ INITSYS?

THIS PROCEDURE INITIAL THE SYSTEM SIMULATIONsCONSTRUCT DATA TAELE.FOR
ORIGINATOR AND DELAY NODE., READ THE INITIAL VALUE OF SEED NUMBER TO
GENERATE RANDOM NUMBER. THIS PROCEDURE ALSO INITIAL VALUE FOR ALL
ORIGINATOR» DELAY AND DESTROYER NODES

INFUT PARAMETERS

RANSEED { NUMBER OF SEED VALUE USE FOR GENERATE RANDOM NUMEBER

QUTPUT FARAMETERS ¢

NONE

FROCEDURE INITSYSi

VAR
BEGIN

WW § INTEGERS (XREPRESENT NUMBER OF NODEX)

WRITELN/ WRITELN? WRITELN?

WRITELN(’TABLES DESCRIBING THE NETWORK SYSTEM' 15817

WRITELN(” -- ’138)5

WRITELN/ WRITELN{ WRITELNS?

OUTPUTDATAS

WRITELNS ‘

WRITELN(PLEASE ENTER THE VALUE OF SEED FOR INITIAL FIRST RANDOM NO.)j
WRITE(/SHOULD BE INTEGER NUMBER !!!! 1 ‘)i

READLN(RANSEED) i

WRITELN(RANSEED)}

WRITELN$ WRITELN; .

WW ¢= 05 (%X SET VALUE OF WW %)

EVER.EFRONT $= NILj

EVER.EBACK = NILj

EVEQ.ECOUNT $= 0}

FOR NO {= 1 TO ORIGS DO (% INITIAL ALL ORIGINATOR NODES %)

BEGIN
INITIALORI(ORIENGI) 5
END3{
FOR XX $= 1 TO DELAS DO. (% INITIAL ALL DELAY NODES Xx)
BEGIN
INITIALDEL (DELSCXX1)#
END3
FOR YY {= -1 DOWNTO DESTS DO (% INITIAL ALL DESTROYER NODBES Xx)
BEGIN
INITIALDES(DESSLYY1)j
ENDj}

(% INSERT STOP TIME FOR SIMULATION RUN IN EVENTQUEUE *)
INSERTEVENTQUEUE (CALENDAR yMAXT s STOP yWW s NIL) §

WRITELN? WRITELN#

WRITELN(’ ¢ BEGIN SIMULATION & “351)}

WRITELN?

LISTEVENTRUEUE §

WRITELN# WRITELNS

WRITELN(’DO YOU WANT EVENTQUEUE LISTED DURING RUNNING THE PROGRAM 7°)4

"WRITE(’TYPE Y<ESX»» OR N0 3)i ,

READLN(SELECT1)#

WRITELN(SELECT1) 4
WRITELN(’DO YOU WANT EVENTS LISTED DURING RUNNING THE PROGRAM ?7)7

WRITE('TYPE Y<ESXxs OR N<OX> 3 ‘)3

READLN(SELECT2) +

WRITELN(SELECT2) 4

IF SELECT2 = ‘Y’ THEN

REPORTHEADING#

TIME $= 0,03 (% INITIAL CLOCK FOR THE SYSTEM X)

PACND = 0/ (% INITIAL VALUE OF PACKET NUMBER IN THE SYSTEM X)
WRITELNS#

WRITELNC/NOW...START THE SYSTEM SIMULATION NETWORK !’)3§

- 82 -

WRITELN} WRITELN# WRITELNS
WRITEC’T’ 34y /0RGPACE’ 314y Trac,. 311y NODE=>NODE’$14y ‘Tcre,”!
WRITEC/Triext 315y G=8IZE* $13s /' Tleave $12,'Q-8IZE’ 114, 'K¥'310)
WRITELN(/Ttran., 12)§
WRITELN; WRITELN? WRITELNj

ENDi (% INITSYS %)

12)5
i

(X BEGINING OF THE MAIN PROGRAM X)
(X DESCRIBING THE VARIABLES IN MAIN PROGRAM %)

(@ MAXT t MAXIMUM TIME FOR SIMULATION RUN
. D ¢ POINTER TO FIRST EVENT IN EVENTQUEUE
NPVAL ¢ EVENT THAT TAKE OFF FROM EVENTQUEUE
TT - ¢ TIME OF OCCURENCE EVENT
ACTION ¢ ACTION TYPE OF CURRENT EVENT
PARM ¢ SPECIFY NUMBER OF NODE IN THE SYSTEM
NPTR 3 PACKET INVOLVED IN CURRENT EVENT
ORI + SPECIFY ORIGINATOR NODE THAT INVOLVED IN CURRENT
EVENT .
DELS + SPECIFY DELAY NODE THAT INVOLVED IN CURRENT EVENT
DESS + SPECIFY DESTROYER NODE THAT INVOLVED IN CURRENT
EVENT
NO3 ¢ NUMBER OF EXIT FROM ORIGINATOR NODE
TINM t NEXT CREATION TIME FOR NEW PACKET
TEM4 + LEAVING TIME OF THE PACKET FROM DELAY NODE IN CASE
DELAY QUEUE IS EMPTY)
TEMS $ LEAVING TIME OF THE PACKET FROM DELAY NODE IN CASE
DELAY QUEUE IS NOT EMPTY
| NO2 $ NUMBER OF EXIT FROM DELAY NODE
TEM2 ¢ LEAVING TIME OF THE PACKET FROM ANOTHER DELAY NODE
: AFTER COMPUTE EXITPATHs QUEUE EMPTY
¢ LEAVING TIME FROM ANOTHER DELAY NODE» QUEUE

WRITELN# WRITELNS

WRITELN(’WELCOME TO THE SIMULATION SYSTEM FOR COMMUNICATION NETWORK’)§
WRITELN#

REPEAT

REFPEAT
WRITELN(‘PLEASE ENTER MAXTIME_.THE TOTAL SIMULATION TIME IN MINUTES’)}/

READLN(MAXT); (% READ MAXIMUM TIME FOR RUN SIMULATION FROGRAM X)
WRITELN? .

WRITELN(MAXT:1031)3

WRITELNS WRITELNi

UNDERLINE}

WRITELNj

IF MAXT > 0.0 THEN

GOODDATA (= TRUE
ELSE
BEGIN

| TEM3
NOT EMPTY %)
BEGIN
}

GOODDATA = FALSEj
WRITELNC/%x% YOU MADE AN ERROR IN THE INPUT»’) 4
WRITELN#
WRITELNC%xX MAXTIME MUST BE REAL AND NON-NEGATIVE NUMEER.‘)}#
WRITELNS
WRITELNC “%%kk% PLEASE TRY AGAIN XXXx’)j
WRITELNF WRITELNS
END’

- 83 -

END.
(XEND

UNTIL GOODDATAS
OPENFILES
READDATA?
INITSYS
REFEAT
(X NOW WE RUN THE SIMULATOR FOR AS LONG AS THE USER SPECIFIED XD
IF EVEQ.EFRONT".TIME «= MAXT THEN
BEGIN (% CURRENT TIME IN EVENTQUEUE < MAXIMUM TIME X)
GETNEXTEVENT (NPVAL » TTrACTION, PARMyNPTR) #
= EVEQ.EFRONT;
(X ADVANCE CLOCK TO NEXT EVENT IN EVENTQUEUE X)
EVEQ.EFRONT".TIME $= D”.TIME;
(X NOW SIMPLY CALL THE AFPROFRIATE ROUTINE FOR THIS EVENT TYFE X*)
CASE ACTION OF
CREATE ¢ CREATEPACKET(ORI.PARM» TIMyNO3y»TEM4»DELS,DESSyTEMS) ¥
LEAVE ¢ LEAVEDELAY(NPTRyPARMsDELS,DESSsyNO2yTEM2,TEM3) #
STOF ¢! STOPSIM;
END# (% OF CASE %)
IF SELECT2 = ‘Y’ THEN (% REFORT ACTION AFTER PERFORMED EVENT %)
REPORT (ACTION) 3
IF SELECT1 = ‘Y’ THEN (X% SHOW EVENTS IN EVENTQUEUE %)
LISTEVENTRUEUE}
END3 -
UNTIL ACTION = STOFj}
WRITELNS
LISTEVENTQUEUE
FINALREPORT(ORI»DELSyDESS)# (% PRINT RESULTS OF SIMULATION RUN X)
WRITELNC/DO YOU WISH TO RUN THE SIMULATION AGAIN +.4‘)3
WRITELNS '
WRITELN(’FOR A DIFFERENT TIME VALUE OR DIFFERENT INPUT FILE ?7)i
WRITELN}
WRITE(/TYPE Y<ES>» OR N<0O> .)i
READLN(SELECT) ¢
WRITELN(SELECT)#
DONE (= (SELECT = ‘N‘%)j
CLOSE(INFILE)
CLOSE(OQUTFILE)
UNTIL DONE;
WRITELNS WRITELNS .
WRITELN(’EXITING FROM THE SIMULATION PROGRAM...sTHANK YOU’)3§
WRITELNS$

OF SIMULATION PROGRAMX)

- 84 -

CHAPTER 9

INPUT AND OUTPUT FORMATS

CHAPTER 9
INPUT AND OUTPUT FORMATS

The successful development of simulation model have to
have two processes to meet problem solving requirements.
They are

1.+ Data Acquishtion. The identification,
specification, and collection of data.

2. Formulating and Printing Output.

In our simulation network program, we have the routines
that handle two processes for input and output data of the
simulation. The routine Readdata is defined for input data
and we have five routines for the output data. There are
Outputdata, Reportheading, Report, Listeventqueue, and
Finalreport. The details for these routines are described as

fdllows

9.1 Input Format
The routine that handle the processes for read an input

data of the simulation program is Procedure Readdata.

Input File Format

The input data file is a sequence of lines, each line

- 85 -

contains only one datum. The input data file is broken down
into two parts. First, is the data for originator nodes and

second, is the data for delay nodes.

The first line of an input data file defines the number
of originator nodes. The following lines describe the data
for each originator node. Each originator node is described
by three 1lines of data. The first line of data for each
originator node gives the exit number for a packet ¢to
transfer from the originator node to another node in the
system. The second line is Minwait. The third line of data
for an originator node is Maxwait. The data for originator
nodes continues line by line to the 1last originator node.

This completes the first part of the input data file.

After the last line of data for originator nodes, the
next line gives the number of delay node in the system. The
next line gives the number of exits from each delay node.
All delay nodes will have the same number of exits, some of
these exits may have probability O. The following lines
describe the data for each delay node. 1In our example, each
delay node is described by eight lines of data. The first
line of data for each delay node gives the exit numbers, one
exit per line. 1In our example, we have three 1lines for
number of exits. The next lines define the probabilities for

each respective exit, also one probability per line. In our

- 86 -

example, we have three lines for the probabilities. The next
line defines minimum service time for a packet in this delay
node (Holdmin). The following 1line defines the maximum
service time for a packet in this delay node (Holdmax). The
data for delay nodes continues line by line to the last delay
node. This completes the second part of the input data file.
For example, we create an input data file for a network
system with 2 originator nodes, 2 delay nodes, 5 destroyer
nodes, and 3 exits from each delay node. With specific data,
the input data file is shown in the following diagram.
{number of originator nodes}
{number of target node}

5 {minwait}

Ori.node no.!1 &
{maxwait} First part

Ori.node no.2 { .

2
2
2.
y,
1
3
5.
2
3
2
0
0.
0
2
3

/\\

0
0
5
{number of delay nodes}
{number of exit paths}

1
{exit numbers for delay node}

6

<3

F

Del.node no.1 { {exit probabilities}

y
3
.7 {holdmin}
.9 {holdmax} >Second part
5

Del.node no.2 <

Qo0

9K
[ws)
(-}

[4

FPMEWOOOO I

" Figure 9.1 Format of input data file
- 87 -

Note: Non numeric data are comments and will not

appear in an actual data file.

If the number of exits from a particular delay node is
less than the number that we define, in this case 3, we use 0
represent the exit number and 0.0 for exitprob for each exit

that is missed.

9.2 Output Formats
The simulation network program has 5 routines for print
the output. The details for these output are described as

follows

Statistical Summaries for Simulation Network

The statistical summaries table of the simulation
network system for originator node and delay node are
constructed by Procedure Outputdata. The data in this table
has been read from an input data file. From the previous
example if we have 2 originator nodes, 2 delay nodes and 3
exits from each delay node, the statistical table for the

simulation network system should be as follow

Table Describing the Network System

For originator node

Originator node no. Exit Minwait Maxwait
1 2 2.5 4.0
2 1 3.0 5.5

For delay node

Delay node no. Exits Exprob Holdmin Holdmax
1 -1 26 0.3 0.4 0.3 2.7 3.9
2 -4-5 0 0.5 0.5 0.0 3.1 4.8

Table 9.1 Statistical table for simulation network

Debug Output for Action Listing

The heading for the debug report and reports after the
occurrence of an event are constructed by 2 procedures,
Reportheading and Report. We have 6 types of actions that
will be reported. |

1. Action create and send packet to delay node,
immediate servic.

2. Action create and send packet to delay node,
put in delay queue.

3. Action create and send packet to destroyer
node.

4, Action leave from delay node to delay node,
immediate service.

- 89 -

We give a sample debug

the above

5. Action leave from delay node to delay node,
put in delay queue.
6. Action leave from delay node to destroyer

node.

output for action listing, using

data, interspersed with our comments. This sample

is shown in Table 9.2

In case of
We use the

action = create and packet is sent to delay serve.
symbol O => DS represent in this case.

Time Packet Packet time Event Next create Time
no. in system descriptor leaving
8.4 1,3 8.4 0 1=>DS 2 11.3 9.8
9.7 3,5 9.7 0 2=>DS 1 12.0 11.6
In case of action = create and packet is sent to delay queue.

We use the

Time Pac.

no.
10.5 2,4
13.9 3,7

In case of
node.
We use the

Time Pac.
no.
2.9 1,6

symbol 0 => DQ represent in this case.

Pac.time Event next time Q-size
in system descriptor create leaving to node
10.5 0 2=>DQ 7 12.9 4.1 2
13.9 0 3=>DQ 1 15.0 15.9 1
action = create and packet is sent to destroyer

symbol O => K represent in this case.

Pac.time Event Next Total Transit
in system descriptor create killed time
12.9 0 1=>K 3 14.8 3 0.0

Table 9.2 Sample of Debug Output for Action Listing

- 90 -

In case of action leave from delay to delay serve,
We use the symbol D => DS represent in this case.

Time Pac. Pac.time Event Next Ev Q-size Time
no. in sys. descriptor fromnode fromnode leaving

20.0 1,7 14,8 D 7=>DS 5 E 0 26.6

24.7 2,6 18.3 D 2=>DS 3 28.4 1 27.2

In case of action leave from delay to delay queue.
We use the symbol D => DQ represent in this case.

Time Pac. Pac.time Event Next Ev Q-size Time Q-size
no. in sys. descrp. fromnode fromnode leaving tonode

25.9 3,8 20.7 D 1=>DQ 2 E 0 29.8 1

30.8 1,8 18.2 D 2=>DQ 4 32.6 1 34.6 2

In case of action leave from delay to destroyer node.
We use the symbol D => K represent in this case.

Time Pac. Pac.time Event Next Ev Q-size Total Transit
no. in sys. descrp. fromnode fromnode killed time

31.5 2,7 27 .9 D 7=>K 9 34.0 2 5 3.8
34.1 3,8 20.7 D 2=>K 1 E 0 8 5.9

Table 9.2 (cont.)

Sample of Debug Output for Action Listing

We put character 'E' in the column ‘'next event from
node' if the delay queue of that node is empty. If the delay

queue is not empty, we report the time of the next leave

event from that node in this column.

j

Debug Output for Event Queue List

| All of the events in the event queue are listed by the
Procedure Listeventqueue. The number of events in the event
queue vary by Procedure Inserteventqueue and Procedure
Getnextevent, An example of the event queue lists is shown

in Table 9.3

Schedule Time in Eventqueue Action Type Node Type No
4.1 Create Originator | 1
5.8 Leave Delay 2
6.0 Leave Delay 1
7.4 Create Originator | 2
9.2 Create Originator | 3
9.8 Leave Delay 7

Table 9.3 shown lists of the event in event queue

Summary Output
The summary report of the simulation network is
produced by the Procedure Finalreport. The -example of

summary output is shown in Table 9.4

- 92 -

} Originator node no. Total packets created
1 5
| 2 3
| Total packets created by originator nodes = 66
i Delay node Total packets Average delay
‘ no. in delay node time at node
1 7 0.0
2 3 2.8
3 5 3.1
y 2 0.0

Total packets in delay nodes
Total delay time in delay nodes
Average delay time in delay node

Destroyer node

Total packets Average transit
no. destroyed time
| 1 1 3.0
2 5 4.4
3 2 2.6

Total lifetime of packets
Average transit time for packet

Total packet destroyed by destroyer nodes

- 93 -

wouon
— 00 OO
— o
[oNe)

Table 9.4 Summary Report of the Simulation Network
|
\
|

CHAPTER 10

ANALYSIS RESULTS OF SIMUIATION NETWORK PROGRAM

CHAPTER 10
ANALYSIS RESULTS OF SIMULATION NETWORK PROGRAM

The program was coded and run on a VAX 11/780. In this
chapter we will present the results of a simulation run for
one system. Table 10.1 shows the data describing a
simulation network system. These data were in an input data
file, as described in Chapter 9. For this example, is used
this input data file and ran the simulation for 100 time
units (maxtime = 100.00). The initial value of the random
number seed was zero. The summary results are presented in

Table 10.2.

Originator node no. Exit Minwait Maxwait
1 2 3.2 5.7
2 7 3.5 6.2
3 1 3'0 6.5

Table 10.1 Data describing simulation network system

- 94 -

Delay node nol Exits Exprob Holdmin | Holdmax
1 -1 2 6 -10T7}.3 .1 .2 .3 .1 2.0 3.5
2 4 1 -3 -8 0}.2 .1 .4 .3.0 1.7 2.9
3 -4 5 6 -6 0| .4 .3 .2 .1.0 2.6 3.8
y 6 -5 -9 5 3}.4.2 .1 .1 .2 3.0 6.0
5 2 =4 4 -2 -7}.3 .2 .1.2.2 2.5 5.0
6 3 7-1 0 0f.3 .4 .3 .0.0 3.1 4.5
7 T1 6 -7 -10 3] .1 .1 .4 .2 .2 2.2 3.9

Table 10.1(Cont.) Data describing simulation network system

Ffom the above table, this network model contains 3
origiantor nodes, 7 delay nodes, and 10 destroyer nodes.
Each delay node has 5 exits or 1less than 5, to transfer
packets to another node. We now present the results of a

simulation run.

- 95 -

Results of a simulation run

Simulation for 100 time units

Originator node no. Total packets created
1 24
2 21
3 23

Total packets created by originator node = 68

Delay node Total packets Average dalay
no. _ in delay node time at node
1 24 0.053
2 30 0.428
3 6 0.003
uy 6 0.000
5 2 1.368
6 9 0.223
7 26 1.313
Total packets in delay nodes = 103
Total delay time in delay nodes = 52.988
Average delay time in delay node = 0.514
Destroyer node Total packets Average transit
no. destroyed time
1 14 5.415
2 1 22.978
3 9 4.018
y 3 9.998
5 1 10.716
; 6 1 8.471
7 11 5.041
8 13 2.665
; 9 1 8.115
‘ 10 11 4,865
’ Total packets destroyed by destroyer nodes = 65
Total lifetime of packets = 335.858
Average transit time for packet = 5,167
CPU seconds used = 0.56

Table 10.2 Results of the simulation network model

- 96 -

wWith 100 units running time, originator nodes number 1,
2 and 3 created 24, 21 and 23 packets, respectively. The
total of packets created in this network model is 68. Now,
consider closely the results for delay nodes; From table
10.2 we have an average delay time of packets in each delay
node. Delay node number 4 has an average delay time 0.000,
this means no delay time in this node. Note that delay time
does not include service time. So we can improve system
performance by adjusting the parameter values in exitlists,
in order to transfer packets to delay node number 4. Also,
delay node numbers 5 and 7 have long delay times because of
the value of parameters Holdmin, Holdmax for those nodes. To
minimize delay time for each delay node, we can adjust the
parameter values of Holdmin and Holdmax by studying all of
the information that relates to these values 1in order to
decrease waiting time in the delay queue. By adjusting these
parameter values until we have a proper value of Holdmin and
Holdmax for each delay node we can decrease the value 0.514,

average delay time for the packet in delay node.

Again, from table 10.2 we also have average transit

time for packet. In this case the average transit time is

5.167, this means in our network model, a packet take time
5.167 between when it is created until it is destroyed. To
minimize this time value, we can adjust the parameter values

of input accordingly. -

- 97 -

For example, if we now adjust the parameter values of
input as show in Table 10.3. The new results of a simulation

run are presented in Table 10.4.,

Originator node no. Exit Minwait Maxwait
1 2 3.2 5.7
2 7 3.5 6.2
3 1 3.0 6.5
Delay node no; ExitS Exprob Holdmin | Holdmax
1 .1 2 6 =10 4}].3 .1 .2 .3 .1 2.0 3.5
2 4y 1 -3 -8 0}.2 .1 .4 .3.0 1.7 2.9
3 -u 5 6 -6 0 .u .3 -2 01 oo 206 3-8
4 6 =5 -9 5 3.4 .2 .1 .1 .2 1.5 2.6
5 2 -u u -2 -7 -3 -2 .1 02 -2 2-1 3.3
6 3 u -1 0 O 05 02 l3 .0 ao 3.1 4.5
7 -1 6 =7-10 3.1 .1 .4 .2 .2 1.9 2.8

Table 10.3 Data describing simulation network system

- 98 -

Results of a simulation run

Simulation for 100 time units

Originator node no. Total packets created
1 23
2 21
3 22
Total packets crgated by originator node = 66
Delay node Total packets Average delay
no. in delay node time at node
1 28 0.617
2 28 0.220
3 14 0.056
4 7 0.132
5 3 0.000
6 16 1.949
7 21 0.000
Total packets in delay nodes = 117
Total delay time in delay nodes = 56.332
Average delay time in delay node = 0.481
Destroyer node Total packets Average transit
no. destroyed time
| 1 10 6.618
| 2 0 0.000
3 8 3.499
4 8 10.624
5 3 6.519
6 0 0.000
7 9 6.127
8 10 2.993
‘ 9 2 8.461
| 10 12 3.367
Total packets destroyed by destroyer nodes = 62
Total life time of packets = 341.121
Average transit time for packet = 5.502
CPU seconds used = 0.56

Table 10.4 Results of the simulation network model

- 99 -

From Table 10.4, after we adjust some parameter values,
the value of average delay time decreases from 0.514 to
0.481. Also delay times in delay node numbers 5 and 7 are
decreased. But the average transit time for a packet is
increased from 5.167 to 5.502. The reason 1is, we did not
adjust the parameters Holdmin and Holdmax of every delay
node, we just adjusted those values for delay node numbers 4,
5, and 7. Therefore, the simulation program must be able to
run frequently, with a different set of parameters in order

to find optimal parameters.

Most of the parameter values of input data for network
modeling have an influence on the average transit time for
packet. If we find a proper value of service time in a delay
node by adjusting the parameters Holdmin and Holdmax then the
average transit time should be decreased. The reason for the
previous statement is logically, if the service time is
short, then delay time is short and if delay time and service
time are short, then total transit time is short. The other
factors that may be adjusted in order to improve average

transit time are

(1) Number of delay nodes and number of exits for each
delay node or Work distribution. If we have many delay nodes
in the network system, we can distribute the packets to those

deléy nodes. So, delay node will not be busy and the packets

- 100 =~

do not wait in delay queues. Then the average transit time

is decreased. And also if we have a lot of exits for each
delay node, it produce the same result that is we can

decrease the average transit time for packet.

(2) The value of Minwait and Maxwait for each
originator node or Decreasing the load on the system. If we
decrease these values, delay node will not be as busy
transfering packets through the system, because before the
next packet is created, the former packet 1is already
transfered from delay node to another node. When delay nodes

are not as busy, average transit time is decreased.

Because simulation is a design tool, we can improve
performance of the system by adjusting the parameter values.
These values can be changed to minimize the time values for

the network model.

APPENDIX A

FLOW CHART OF FUNCTIONS MANAGING QUEULE

FLOW CHART OF FUNCTIONS MANAGING QUEUE

APPENDIX A

INSERTEVENTQUEUE
pvent 1 Jvent i+1
rront ‘
Back
svent 1 Svent i+
Gme—— 2es s emnml)
i \\ ffew event /’
Frant ///
where:
Back

« Before

time of new svaut
>= time of event
i and € time of
event i+1,

Figure shows flow chart of procedure Inserteventqueue

- 102 -

GETNEXTEVENT

Event 1 Lvent 2

- E—— e s 00000 21 0TS

Tront

®

Back

wvent 2

.o e 000000 L T LT

L 4

Tront

Bsack

Tigure shows flow chart of

rocedurs Getnextevent

‘g

- 105 =

INSERT

Packet Packet
- o Nfol e« o Infollil
Front Refore
Back
- - ; jew racket
racket Packet
- Info| e Info] e— »l TnFO[Nil
Tront T rter
A4 VT
Back

Pigure snows

flow chart of procedure Insert

DELETE

racket Packet
Lon » Inf . nfo [Nil
| Front
Dack
racket
~— of InfaNil
*ront
Rack

Figure shows flow chart of procedure Del

- 105 -

after

APPENDIX B

TESTING RANDOM NUMBER

APPENDIX B
TESTING RANDOM NUMBER

Our simulation network system has a function generating
pseudo random number to perform the model. In our modeling
we use the following formula to generate a sequence of random

numbers on the interval [0,1].

Seed = (multiplier x Seed + increment) mod modulus
Random number = Seed/65536
where
modulus = 65536
multiplier = 25173
increment = 13849
seed = integer number

This formula can produce different sequence of 65,536
real random numbers by altering the initial parameter, seed.
For example, if we pick 2 different numbers of initial seed,
say 0O and 4 and we require 100 real random numbers, we will
get different sequences. The two different sequences are
shown in the following Tables.

- 106 -

0.211 0.744 0.476 0.262 0.212 0.936 0.793 0.474 0.480 0.290
0.305 0.871 0.936 0.163 0.560 0.937 0.753 0.167 0.356 0.406
0.352 0.160 0.739 0.263 0.405 0.252 0.005 0.7T42 0.834 0.802
0.702 0.328 0.810 0.419 0.626 0.754 0.757 0.963 0.825 0.005
0.345 0.543 0.595 0.316 0.497 0.518 0.484 0.171 0.383 0.499
0.287 0.304 0.428 0.344 0.053 0.700 0.301 0.162 0.077 0.593
0.925 0.313 0.906 0.468 0.472 0.407 0.339 0.058 0.364 0.302
0.420 0.349 0.272 0.109 0.u448 0.574 0.119 0.186 0.970 0.218
0.076 0.143 0.781 0.015 0.566 0.839 0.929 0.950 0.259 0.38%4
0.711 0.257 0.079 0.137 0.674 0.420 0.196 0.707 0.614 0.175
Table of sequence 100 real random numbers, seed = 0
0.748 0.497 0.803 0.960 0.600 0.489 0.603 0.762 0.421 0.408
0.677 0.388 0.884 0.363 0.322 0.074 0.911 0.714 0.085 0.304
0.673 0.069 0.764 0.812 0.592 0.289 0.404 0.583 0.340 0.482
0.303 0.851 0.839 0.008 0.008 0.101 0.261 0.477 0.315 0.066
0.028 0.748 0.272 0.731 0.811 0.929 0.175 0.331 0.533 0.381
0.571 0.350 0.365 0.713 0.257 0.523 0.730 0.784 0.281 0.833
0.298 0.704 0.937 0.515 0.993 0.832 0.775 0.053 0.958 0.777
0.590 0.183 0.697 0.399 0.430 0.887 0.801 0.808 0.591 0.401
0.218 0.361 0.620 0.209 0.121 0.670 0.314 0.046 0.931 0.593
0.720 0.895 0.319 0.239 0.134 0.991 0.209 0.968 0.105 0.818

Table of sequence 100 real random numbers, seed = 4

The program also has a function managing simulation
time. The times involved are creation time for a new packet
and service time of a packet in a delay node. Both of these
times can be <called 'event times', The event times are
always updated frequently during simulation run. We use the
function shows below to compute event times in our simulation

- 107 -

network model.

Event time = Random number*(High-Low)+Low+Current time

This formula uses the sequence of random numbers on the
interval [0,1] that we are discussed earlier and two
parameter values called Low and High (real numbers). These
two parameters are defined in the input data file before
running the simulation, and are differed for different event

types in the model.

Suppose, we defined the value of parameter Low and High
as 2.5 and 4.5 respectively. Then we use the sequence of
real numbers generated above to compute the event time in the

model. A list of 100 event times are shown in the following

table
2.923 3.988 3.453 3.024 2.925 4,372 4.085 3.449 3.406 3.079
3.110 4,243 4,373 2.827 3.621 4.375 4,006 2.835 3.212 3.313
3.204 2.821 3.977 3.027 3.310 3.004 2.510 3.985 4.167 4.104
3.904 3.155 4,121 3.338 3.753 4.008 4.014 4.426 4,151 2.510
3.190 3.586 3.691 2.132 3.493 3.537 3.468 2.842 3.267 3.498
3.074 3.109 3.355 3.187 2.605 3.901 3.102 2.824 2.653 3.687
4,350 3.126 4.313 3.436 3.444 3,314 3.177 2.616 3.228 3.105
3.341 3,197 3.044 2,718 3.397 3.647 2.738 2.872 4.439 2.935
2.653 2.786 4.062 2.530 3.932 4.178 4.358 4.400 3.019 3.268
3.922 3.014 2.658 2.744 3.847 3.341 2.892 3.914 3.727 2.849

Event times, using initial seed = 0, Low = 2.5, High = 4.5

The values in previous Table use the initial wvalue 0

for generate random numbers. If we take initial value 4 for

- 108 -

generate random numbers, it means that the 1list of event
times will be changed. We can compare those list of numbers

from the next Table.

3.996 3.494 4,107 4.421 3.699 3.479 3.706 4.023 3.342 3.316
3.854 3,276 4.268 3.277 3.144 2.648 4.321 3.928 2.671 3.108
3.845 2.638 4.028 4.124 3.683 3.078 3.308 3.666 3.180 3.464
3.106 4.202 4.178 2.517 2.517 2.701 3.022 3.454 3,131 2.632
2.556 3.995 3.044 3.963 4.123 4.358 2.850 3.163 3.566 3.263
3.642 3,201 3.231 3.926 3.015 3.545 3.960 4.069 3.061 4,165
3.097 3.909 4,375 3.529 4.486 u4.164 4.050 2.606 4,471 4,055
3.680 2.865 3.895 3.299 3.359 4.274 4.102 4.115 3.681 3.302
2.936 3.222 3.739 2.918 2.741 3.840 3.127 2.591 4.361 3.685
3.939 4.289 3.139 2.978 2.769 4.482 2.918 4.437 2.709 4.137
Event times using initial seed = 4, Low = 2.5, High = 4.5

Finally, the conclusion about the random numbers that
are used in the simulation network model is, if we select a
different initial seed, we obtain a different sequence of
random numbers. That causes a change of event times in the
model. When the event times are different,. the results of
the simulation run for the network system are different too.
An example of the different results are shown in the

following two Tables.

- 109 -

Results of the Simulation Run for Network System

Originator node no.

Total packet created

1 24
2 21
3 23
Total packet created by originator nodes = 68
Delay node Total packets Average delay
no. in delay node time at node
1 24 0.053
2 30 0.428
3 6 0.003
4 6 0.000
5 2 1.368
6 9 0.223
7 26 1.313
Total packets in delay nodes = 103
Total delay time in delay nodes = 52.988
Average delay time in delay node = 0.514
Destroyer node Total packetS Average transit
no. destroyed time
1 14 5.415
2 1 22.978
3 9 4,018
4 3 9.998
5 1 10.716
6 1 8.471
7 11 5.041
8 13 2.665
9 1 8.115
10 11 4,865
Total packet destroyed by destroyer nodes = 65
Total life time of destroyer nodes = 335.858
Average transit time for packet = 5.167

Table: Shows the results of simulation network used initial
value 0 for the first random number and 100 units for
the maximum simulation run time

- 110 -

Results of the Simulation Run for Network System

Originator node

no.

Total packets created

»
2

3

23
21
21

Total packets created by originator nodes

65

Delay node
no.

Total packets

in delay node

Average delay
time at node

~N OV EW N =

24
27
7
6
3
6
25

0.313
0.139
0.310
0.000
0.000
0.905
0.658

Total packets in
Total delay time

Average delay time in delay node

delay nodes
in delay nodes

98
35.288
0.360

Average transit
time

Destroyer node Total packets

no. destroyed
1 15

2 0

3 7

4 3

5 0

6 0

7 11

8 12

9 1

10 13

5.501
0.000
3.636
9.974
0.000
0.000
7.081
2.493
6.919
3.818

Total packet destroyed by destroyer nodes

Total lifetime o
Average transit

Table:

f destroyer nodes
time for packet

- 111

62
302.251
4,875

Shows the results of simulation network used

initial
value 4 for the first random number and 100 units for
the maximum simulation run time

Because of the different values of the seed, different
results occured. From the above Tables, the number of
packets involved in the system, average delay time and

average transit time for packets are quite different.

Because generating random numbers 1is an important
function for the simulation. The user should be careful,
before running this simulation network program, to choose

carefully the initial value of the seed.

- 112 -

APPENDIX C

GLOSSARY

APPENDIX C

GLOSSARY

ACTIVITY: a process that cause change in the system.
ATTRIBUTE: a property of an entity.
CLOCK: current event pointer of event in event queue.

COMMUNICATION NETWORKS: the system that transfer and
processing of discrete wunits of information within the

network.

CREATE EVENT: event that create a new packet at originator

node.

CREATION TIME: time for create new packet at originator

node.

DELAY NODE: a location in the network where packets wait for

service.

DELAY QUEUE: queue of delay node that handle packets before

send them to other nodes in system.

- 113 -

DESTROYER NODE: node that use to destroy or delete packets

from network.

DISCRETE SIMULATION: model that reproduce the activities and
learn something about the behavior and performance potential

of the system.
ENTITY: an object of interest in a system.

EVENT: a combination of activities that occur in response to

some single activity.

EVENT QUEUE: a linked list data structure that contains a

list of all the events that occur in the network system.
EXIT: a target node number of exit path.

EXITS: 1list of exit paths to other nodes in the system.
EXIT PATH: possible flows of packet from node to node.
EXPROB: probabilities for exit paths of delay nodes.
HOLDMAX: maximum service time in delay node.

HOLDMIN: minimum service time in delay node.

LEAVING TIME: time that packet leave from delay node.

LEAVE EVENT: event that packet leave from delay node going

to another node in the system.

LINK: the path that connect between two nodes,

MINWAIT: minimum time until next packet creation.

MAXWAIT: maximum time until next packet creation.

MODEL: a representation of a system to describe a detail and

prediction the behavior of the system,.

NETWORK: the system that two or more elememts interact with

one another.

NETWORK MODELING: the model consists of an interelated set

of nodes and links.

NODE: a point in a network which is a junction of lines.

ORIGINATOR NODE: node that create packets and routes them

into the network system,.

PACKET: an entity that contain information of interest and

flow through the network.

QUEUE: a data structure used for dynamic temporary storage

of elements.

RANDOM NUMBERS: numbers that generate from the algorithm for
which contain the value of multiplier, increment, and

modulus.

SIMULATION: the process of conduecting experiments on the
- 115 -

ccmputer model of a dynamic system.

STOP EVENT: event that stop simulation vrogram.

SYSTEM: an aggregation or assemblage of objects joined 1in

some regular interaction or interdependence,

TRANSIT TIME: time that each vpacket takes since creation

until destruction.

- 116 -

APPENDIX D

SYMBOL REPRESENTATION

SYMBOL

APPENDIX D
SYMBOL REPRESENTATION

REPRESENTS

ORIGINATOR NODE: node that create
packets and send them through the

system,

DELAY NODE: a single server queue.

DESTROYER NODE: node that receives a
packet and removes it from the

system.

PROCESSING: a group of program
instructions which perform a

processing function of the program.

DECISION: the decision function used
to document points in the program
where a branch to alternate paths is

- 117 - .

possible.

CD TERMINAL: the begining, end, or a
point of interuption in a program.

- 118 -

BIBLIOGRAPHIES

BIBLIOGRAPHIES

Alan, A.; Pritsker, B.; and Pegden, Claude Dennis.

Introduction to Simulation and SLAM. New York: A

Halsted Press Book, John Wiley and Sons, 1979.

Bobillies, P.A.; Kahan, B.C.; and Probst, A.R. Simulation
with GPSS and GPSS V. New Jersey: Englwood Cliffs,

1976.

Bulgren, William G. Discrete System Simulation. Englewood

Cliffs, New Jersey: Prentice-Hall Inc., 1982.

Cellier, Francois E. Progress in Modeling and Simulation.

New York: Academic Press, 1982.

Cross, M.; Gibson, R.D.; O'Carroll M.Jd.; and Wilkinson

T.S. Modeling and Simulation in Prastic. New York:

John Wiley and Sons Ine., 1978.

Goodman, S.E., and Hedetniemi, S.T. Introduction to the

Design and Analysis of Algorithms. University of

Verginia: Mc Graw-Hall, Inc., 1977.

Grogono, Peter. Programming in PASCAL. Concordia

University, Montreal: Addison-Wesley, Publishing

Company, Inc., 1980.

- 119 -

Law, Averill M., and Kelton, David W. Simulation Modeling

and Analysis. New York: Mc Graw-Hill Inc., 1982.

Lehman, Richard S. Computer Simulation and Modeling.

Hillsdale, New Jersey: Lawrence Erlbaum Associates,

Publishers, 1977.

Maisel, Herbert, and Gnugnoli, Giuliano. Simulation of

Discrete Stochastic Systems. Chicago: Science

Research Associates Press, 1972.

Moore, Laurence J., and Clayton, Edward R. GERT Modeling and

Simulation. New York: Mason/Charter Publishers, Inc.,

1976.

Schneider, Michael G., and Bruell, Steven C. Advance

Programming and Problem Solving with PASCAL. New York:

John Wiley and Sons Inec., 1981.

Schoemaker, S. Computer Networks and Simulation. New York:

North-Holland Publishing Company, 1978.

Sharma, Roshan Lal; De Sousa, Paulo J.T.;and Ingle, Ashok D.

Network Systems. New York: Van Nostrand Reinhold

Company, 1982.

Zaks, Rodnay. Introduction to PASCAL Including UCSD PASCAL.

University of California: Sybex Inc., 1981.

- 120 -

Zeigler, Bernard P.

Theory of Modeling and Simulation.

York: John Wiley and Sons Inc., 1976

- 121 -

New

	Atlanta University Center
	DigitalCommons@Robert W. Woodruff Library, Atlanta University Center
	12-1-1983

	The system simulation for communication network
	Taksin Plabjang
	Recommended Citation

	tmp.1459451380.pdf.oyfcZ

